1887

Abstract

is a phytopathogenic enterobacterium that causes soft rot disease in a wide range of plant species. Maceration, an apparent symptom of the disease, is the result of the synthesis and secretion of a set of plant cell wall-degrading enzymes (PCWDEs), but many additional factors are required for full virulence. Among these, osmoregulated periplasmic glucans (OPGs) and the PecS transcriptional regulator are essential virulence factors. Several cellular functions are controlled by both OPGs and PecS. Strains devoid of OPGs display a pleiotropic phenotype including total loss of virulence, loss of motility and severe reduction in the synthesis of PCWDEs. PecS is one of the major regulators of virulence in , acting mainly as a repressor of various cellular functions including virulence, motility and synthesis of PCWDEs. The present study shows that inactivation of the gene restored virulence in a strain devoid of OPGs, indicating that PecS cannot be de-repressed in strains devoid of OPGs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.074484-0
2014-04-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/766.html?itemId=/content/journal/micro/10.1099/mic.0.074484-0&mimeType=html&fmt=ahah

References

  1. Barras F., van Gijsegem F., Chatterjee A. K..( 1994;). Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol32:201–234 [CrossRef]
    [Google Scholar]
  2. Bertani G..( 2004;). Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol186:595–600 [CrossRef][PubMed]
    [Google Scholar]
  3. Bohin J.-P., Lacroix J. M..( 2006;). Osmoregulation in the periplasm. The Periplasm325–341 Ehrmann M.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Bontemps-Gallo S., Madec E., Dondeyne J., Delrue B., Robbe-Masselot C., Vidal O., Prouvost A. F., Boussemart G., Bohin J. P., Lacroix J. M..( 2013;). Concentration of osmoregulated periplasmic glucans (OPGs) modulates the activation level of the RcsCD RcsB phosphorelay in the phytopathogen bacteria Dickeya dadantii. Environ Microbiol15:881–894 [CrossRef][PubMed]
    [Google Scholar]
  5. Bouchart F., Delangle A., Lemoine J., Bohin J. P., Lacroix J. M..( 2007;). Proteomic analysis of a non-virulent mutant of the phytopathogenic bacterium Erwinia chrysanthemi deficient in osmoregulated periplasmic glucans: change in protein expression is not restricted to the envelope, but affects general metabolism. Microbiology153:760–767 [CrossRef][PubMed]
    [Google Scholar]
  6. Bouchart F., Boussemart G., Prouvost A. F., Cogez V., Madec E., Vidal O., Delrue B., Bohin J. P., Lacroix J. M..( 2010;). The virulence of a Dickeya dadantii 3937 mutant devoid of osmoregulated periplasmic glucans is restored by inactivation of the RcsCD-RcsB phosphorelay. J Bacteriol192:3484–3490 [CrossRef][PubMed]
    [Google Scholar]
  7. Bradford M. M..( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  8. Clarke D. J..( 2010;). The Rcs phosphorelay: more than just a two-component pathway. Future Microbiol5:1173–1184 [CrossRef][PubMed]
    [Google Scholar]
  9. Collmer A., Keen N. T..( 1986;). The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol24:383–409 [CrossRef]
    [Google Scholar]
  10. Condemine G., Castillo A., Passeri F., Enard C..( 1999;). The PecT repressor coregulates synthesis of exopolysaccharides and virulence factors in Erwinia chrysanthemi. Mol Plant Microbe Interact12:45–52 [CrossRef][PubMed]
    [Google Scholar]
  11. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N..( 1990;). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol172:6568–6572[PubMed]
    [Google Scholar]
  12. Glasner J. D., Yang C. H., Reverchon S., Hugouvieux-Cotte-Pattat N., Condemine G., Bohin J. P., Van Gijsegem F., Yang S., Franza T..& other authors ( 2011;). Genome sequence of the plant-pathogenic bacterium Dickeya dadantii 3937. J Bacteriol193:2076–2077 [CrossRef][PubMed]
    [Google Scholar]
  13. Haque M. M., Kabir M. S., Aini L. Q., Hirata H., Tsuyumu S..( 2009;). SlyA, a MarR family transcriptional regulator, is essential for virulence in Dickeya dadantii 3937. J Bacteriol191:5409–5418 [CrossRef][PubMed]
    [Google Scholar]
  14. Hommais F., Oger-Desfeux C., Van Gijsegem F., Castang S., Ligori S., Expert D., Nasser W., Reverchon S..( 2008;). PecS is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937. J Bacteriol190:7508–7522 [CrossRef][PubMed]
    [Google Scholar]
  15. Kohanski M. A., Dwyer D. J., Wierzbowski J., Cottarel G., Collins J. J..( 2008;). Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell135:679–690 [CrossRef][PubMed]
    [Google Scholar]
  16. Lehman A. P., Long S. R..( 2013;). Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage. J Bacteriol195:5362–5369 [CrossRef][PubMed]
    [Google Scholar]
  17. Loubens I., Debarbieux L., Bohin A., Lacroix J.-M., Bohin J.-P..( 1993;). Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae. Mol Microbiol10:329–340 [CrossRef][PubMed]
    [Google Scholar]
  18. Mahajan-Miklos S., Tan M.-W., Rahme L. G., Ausubel F. M..( 1999;). Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell96:47–56 [CrossRef][PubMed]
    [Google Scholar]
  19. Miller J. H..( 1992;). A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  20. Moran F., Nasuno S., Starr M. P..( 1968;). Extracellular and intracellular polygllacturonic acid trans-eliminases of Erwinia carotovora. Arch Biochem Biophys123:298–306 [CrossRef][PubMed]
    [Google Scholar]
  21. Nasser W., Condemine G., Plantier R., Anker D., Robert-Baudouy J..( 1991;). Inducing properties of analogs of 2-keto-3-deoxygluconate on the expression of pectinase genes of Erwinia chrysanthemi. FEMS Microbiol Lett81:73–78 [CrossRef][PubMed]
    [Google Scholar]
  22. Nasser W., Reverchon S., Robert-Baudouy J..( 1992;). Purification and functional characterization of the KdgR protein, a major repressor of pectinolysis genes of Erwinia chrysanthemi. Mol Microbiol6:257–265 [CrossRef][PubMed]
    [Google Scholar]
  23. Page F., Altabe S., Hugouvieux-Cotte-Pattat N., Lacroix J. M., Robert-Baudouy J., Bohin J. P..( 2001;). Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J Bacteriol183:3134–3141 [CrossRef][PubMed]
    [Google Scholar]
  24. Plessis A., Cournol R., Effroy D., Silva Pérez V., Botran L., Kraepiel Y., Frey A., Sotta B., Cornic G..& other authors ( 2011;). New ABA-hypersensitive arabidopsis mutants are affected in loci mediating responses to water deficit and Dickeya dadantii infection. PLoS ONE6:e20243 [CrossRef][PubMed]
    [Google Scholar]
  25. Resibois A., Colet M., Faelen M., Schoonejans E., Toussaint A..( 1984;). φEC2, a new generalized transducing phage of Erwinia chrysanthemi. Virology137:102–112 [CrossRef][PubMed]
    [Google Scholar]
  26. Reverchon S., Nasser W., Robert-Baudouy J..( 1991;). Characterization of kdgR, a gene of Erwinia chrysanthemi that regulates pectin degradation. Mol Microbiol5:2203–2216 [CrossRef][PubMed]
    [Google Scholar]
  27. Reverchon S., Nasser W., Robert-Baudouy J..( 1994;). pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Mol Microbiol11:1127–1139 [CrossRef][PubMed]
    [Google Scholar]
  28. Reverchon S., Rouanet C., Expert D., Nasser W..( 2002;). Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. J Bacteriol184:654–665 [CrossRef][PubMed]
    [Google Scholar]
  29. Rouanet C., Reverchon S., Rodionov D. A., Nasser W..( 2004;). Definition of a consensus DNA-binding site for PecS, a global regulator of virulence gene expression in Erwinia chrysanthemi and identification of new members of the PecS regulon. J Biol Chem279:30158–30167 [CrossRef][PubMed]
    [Google Scholar]
  30. Simon R., Quandt J., Klipp W..( 1989;). New derivatives of transposon tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene80:161–169 [CrossRef][PubMed]
    [Google Scholar]
  31. Surgey N., Robert-Baudouy J., Condemine G..( 1996;). The Erwinia chrysanthemi pecT gene regulates pectinase gene expression. J Bacteriol178:1593–1599[PubMed]
    [Google Scholar]
  32. Yanisch-Perron C., Vieira J., Messing J..( 1985;). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.074484-0
Loading
/content/journal/micro/10.1099/mic.0.074484-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error