1887

Abstract

Although the great majority of bacteria found in nature live in multispecies communities, microbiological studies have focused historically on single species or competition and antagonism experiments between different species. Future directions need to focus much more on microbial communities in order to better understand what is happening in the wild. We are using olive knot disease as a model to study the role and interaction of multispecies bacterial communities in disease establishment/development. In the olive knot, non-pathogenic bacterial species (e.g. ) co-exist with the pathogen ( pv. ); we have demonstrated cooperation among these two species via quorum sensing (QS) signal sharing. The outcome of this interaction is a more aggressive disease when co-inoculations are made compared with single inoculations. experiments show that these two species co-localize in the olive knot, and this close proximity most probably facilitates exchange of QS signals and metabolites. recreation of their metabolic pathways showed that they could have complementing pathways also implicating sharing of metabolites. Our microbiome studies of nine olive knot samples have shown that the olive knot community possesses great bacterial diversity; however. the presence of five genera (i.e. , , , and ) can be found in almost all samples.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.074468-0
2014-03-01
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/3/556.html?itemId=/content/journal/micro/10.1099/mic.0.074468-0&mimeType=html&fmt=ahah

References

  1. Bagwell C. E., Hixson K. K., Milliken C. E., Lopez-Ferrer D., Weitz K. K.. ( 2010;). Proteomic and physiological responses of Kineococcus radiotolerans to copper. . PLoS ONE 5:, e12427. [CrossRef][PubMed]
    [Google Scholar]
  2. Burke C., Steinberg P., Rusch D., Kjelleberg S., Thomas T.. ( 2011;). Bacterial community assembly based on functional genes rather than species. . Proc Natl Acad Sci U S A 108:, 14288–14293. [CrossRef][PubMed]
    [Google Scholar]
  3. Caspi R., Altman T., Dreher K., Fulcher C. A., Subhraveti P., Keseler I. M., Kothari A., Krummenacker M., Latendresse M.. & other authors ( 2012;). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. . Nucleic Acids Res 40:, D742–D753. [CrossRef][PubMed]
    [Google Scholar]
  4. Driver J. A., Kuniyuki A.. ( 1984;). In vitro propagation of paradox wallnut rootstock. . HortScience 19:, 507–509.
    [Google Scholar]
  5. Duan K., Dammel C., Stein J., Rabin H., Surette M. G.. ( 2003;). Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. . Mol Microbiol 50:, 1477–1491. [CrossRef][PubMed]
    [Google Scholar]
  6. Egland P. G., Palmer R. J. Jr, Kolenbrander P. E.. ( 2004;). Interspecies communication in Streptococcus gordoniiVeillonella atypica biofilms: signaling in flow conditions requires juxtaposition. . Proc Natl Acad Sci U S A 101:, 16917–16922. [CrossRef][PubMed]
    [Google Scholar]
  7. Hosni T., Moretti C., Devescovi G., Suarez-Moreno Z. R., Fatmi M. B., Guarnaccia C., Pongor S., Onofri A., Buonaurio R., Venturi V.. ( 2011;). Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. . ISME J 5:, 1857–1870. [CrossRef][PubMed]
    [Google Scholar]
  8. Human Microbiome Project Consortium ( 2012;). Structure, function and diversity of the healthy human microbiome. . Nature 486:, 207–214. [CrossRef][PubMed]
    [Google Scholar]
  9. Iacobellis N. S., Sisto A., Surico G., Evidente A., DiMaio E.. ( 1994;). Pathogenicity of Pseudomonas syringae subsp. savastanoi mutants defective in phytohormone production. . J Phytopathol 140:, 238–248. [CrossRef]
    [Google Scholar]
  10. Kamei I., Yoshida T., Enami D., Meguro S.. ( 2012;). Coexisting Curtobacterium bacterium promotes growth of white-rot fungus Stereum sp. . Curr Microbiol 64:, 173–178. [CrossRef][PubMed]
    [Google Scholar]
  11. Karp P. D., Paley S. M., Krummenacker M., Latendresse M., Dale J. M., Lee T. J., Kaipa P., Gilham F., Spaulding A.. & other authors ( 2010;). Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. . Brief Bioinform 11:, 40–79. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim H. J., Boedicker J. Q., Choi J. W., Ismagilov R. F.. ( 2008;). Defined spatial structure stabilizes a synthetic multispecies bacterial community. . Proc Natl Acad Sci U S A 105:, 18188–18193. [CrossRef][PubMed]
    [Google Scholar]
  13. Koch B., Jensen L. E., Nybroe O.. ( 2001;). A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. . J Microbiol Methods 45:, 187–195. [CrossRef][PubMed]
    [Google Scholar]
  14. Kolenbrander P. E., Palmer R. J. Jr, Periasamy S., Jakubovics N. S.. ( 2010;). Oral multispecies biofilm development and the key role of cell–cell distance. . Nat Rev Microbiol 8:, 471–480. [CrossRef][PubMed]
    [Google Scholar]
  15. Korgaonkar A., Trivedi U., Rumbaugh K. P., Whiteley M.. ( 2013;). Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. . Proc Natl Acad Sci U S A 110:, 1059–1064. [CrossRef][PubMed]
    [Google Scholar]
  16. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166:, 175–176. [CrossRef][PubMed]
    [Google Scholar]
  17. Kuramitsu H. K., He X., Lux R., Anderson M. H., Shi W.. ( 2007;). Interspecies interactions within oral microbial communities. . Microbiol Mol Biol Rev 71:, 653–670. [CrossRef][PubMed]
    [Google Scholar]
  18. Lambertsen L., Sternberg C., Molin S.. ( 2004;). Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. . Environ Microbiol 6:, 726–732. [CrossRef][PubMed]
    [Google Scholar]
  19. Loake G., Grant M.. ( 2007;). Salicylic acid in plant defence – the players and protagonists. . Curr Opin Plant Biol 10:, 466–472. [CrossRef][PubMed]
    [Google Scholar]
  20. Maldonado-González M. M., Prieto P., Ramos C., Mercado-Blanco J.. ( 2013;). From the root to the stem: interaction between the biocontrol root endophyte Pseudomonas fluorescens PICF7 and the pathogen Pseudomonas savastanoi NCPPB 3335 in olive knots. . Microb Biotechnol 6:, 275–287. [CrossRef][PubMed]
    [Google Scholar]
  21. Manickam N., Bajaj A., Saini H. S., Shanker R.. ( 2012;). Surfactant mediated enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingomonas sp. NM05. . Biodegradation 23:, 673–682. [CrossRef][PubMed]
    [Google Scholar]
  22. Mansfield J., Genin S., Magori S., Citovsky V., Sriariyanum M., Ronald P., Dow M., Verdier V., Beer S. V.. & other authors ( 2012;). Top 10 plant pathogenic bacteria in molecular plant pathology. . Mol Plant Pathol 13:, 614–629. [CrossRef][PubMed]
    [Google Scholar]
  23. Marchi G., Sisto A., Cimmino A., Andolfi A., Cipriani M. G., Evidente A., Surico G.. ( 2006;). Interaction between Pseudomonas savastanoi pv. savastanoi and Pantoea agglomerans in olive knots. . Plant Pathol 55:, 614–624. [CrossRef]
    [Google Scholar]
  24. Marchi G., Mori B., Pollacci P., Mencuccini M., Surico G.. ( 2009;). Systemic spread of Pseudomonas savastanoi pv. savastanoi in olive explants. . Plant Pathol 58:, 152–158. [CrossRef]
    [Google Scholar]
  25. Matas I. M., Pérez-Martínez I., Quesada J. M., Rodríguez-Herva J. J., Penyalver R., Ramos C.. ( 2009;). Pseudomonas savastanoi pv. savastanoi contains two iaaL paralogs, one of which exhibits a variable number of a trinucleotide (TAC) tandem repeat. . Appl Environ Microbiol 75:, 1030–1035. [CrossRef][PubMed]
    [Google Scholar]
  26. Matas I. M., Lambertsen L., Rodríguez-Moreno L., Ramos C.. ( 2012;). Identification of novel virulence genes and metabolic pathways required for full fitness of Pseudomonas savastanoi pv. savastanoi in olive (Olea europaea) knots. . New Phytol 196:, 1182–1196. [CrossRef][PubMed]
    [Google Scholar]
  27. Maurice C. F., Haiser H. J., Turnbaugh P. J.. ( 2013;). Xenobiotics shape the physiology and gene expression of the active human gut microbiome. . Cell 152:, 39–50. [CrossRef][PubMed]
    [Google Scholar]
  28. Meyer F., Paarmann D., D’Souza M., Olson R., Glass E. M., Kubal M., Paczian T., Rodriguez A., Stevens R.. & other authors ( 2008;). The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. . BMC Bioinformatics 9:, 386. [CrossRef][PubMed]
    [Google Scholar]
  29. Mitri S., Xavier J. B., Foster K. R.. ( 2011;). Social evolution in multispecies biofilms. . Proc Natl Acad Sci U S A 108: (Suppl 2), 10839–10846. [CrossRef][PubMed]
    [Google Scholar]
  30. Moretti C., Hosni T., Vandemeulebroecke K., Brady C., De Vos P., Buonaurio R., Cleenwerck I.. ( 2011;). Erwinia oleae sp. nov., isolated from olive knots caused by Pseudomonas savastanoi pv. savastanoi. . Int J Syst Evol Microbiol 61:, 2745–2752. [CrossRef][PubMed]
    [Google Scholar]
  31. Ouzari H., Khsairi A., Raddadi N., Jaoua L., Hassen A., Zarrouk M., Daffonchio D., Boudabous A.. ( 2008;). Diversity of auxin-producing bacteria associated to Pseudomonas savastanoi-induced olive knots. . J Basic Microbiol 48:, 370–377. [CrossRef][PubMed]
    [Google Scholar]
  32. Passos da Silva D., Devescovi G., Paszkiewicz K., Moretti C., Buonaurio R., Studholme D. J., Venturi V.. ( 2013;). Draft genome sequence of Erwinia toletana, a bacterium associated with olive knots caused by Pseudomonas savastanoi pv. savastanoi. . Genome Announc 1:, e00205-13. [CrossRef][PubMed]
    [Google Scholar]
  33. Penyalver R., García A., Ferrer A., Bertolini E., Quesada J. M., Salcedo C. I., Piquer J., Pérez-Panadés J., Carbonell E. A.. & other authors ( 2006;). Factors affecting Pseudomonas savastanoi pv. savastanoi plant inoculations and their use for evaluation of olive cultivar susceptibility. . Phytopathology 96:, 313–319. [CrossRef][PubMed]
    [Google Scholar]
  34. Pérez-Martínez I., Zhao Y., Murillo J., Sundin G. W., Ramos C.. ( 2008;). Global genomic analysis of Pseudomonas savastanoi pv. savastanoi plasmids. . J Bacteriol 190:, 625–635. [CrossRef][PubMed]
    [Google Scholar]
  35. Pérez-Martínez I., Rodríguez-Moreno L., Lambertsen L., Matas I. M., Murillo J., Tegli S., Jiménez A. J., Ramos C.. ( 2010;). Fate of a Pseudomonas savastanoi pv. savastanoi type III secretion system mutant in olive plants (Olea europaea L.). . Appl Environ Microbiol 76:, 3611–3619. [CrossRef][PubMed]
    [Google Scholar]
  36. Quesada J. M., García A., Bertolini E., López M. M., Penyalver R.. ( 2007;). Recovery of Pseudomonas savastanoi pv. savastanoi from symptomless shoots of naturally infected olive trees. . Int Microbiol 10:, 77–84.[PubMed]
    [Google Scholar]
  37. Quesada J. M., Penyalver R., Pérez-Panadés J., Salcedo C. I., Carbonell E. A., López M. M.. ( 2010;). Dissemination of Pseudomonas savastanoi pv. savastanoi populations and subsequent appearance of olive knot disease. . Plant Pathol 59:, 262–269. [CrossRef]
    [Google Scholar]
  38. Ramos C., Matas I. M., Bardaji L., Aragón I. M., Murillo J.. ( 2012;). Pseudomonas savastanoi pv. savastanoi: some like it knot. . Mol Plant Pathol 13:, 998–1009. [CrossRef][PubMed]
    [Google Scholar]
  39. Ramsey M. M., Rumbaugh K. P., Whiteley M.. ( 2011;). Metabolite cross-feeding enhances virulence in a model polymicrobial infection. . PLoS Pathog 7:, e1002012. [CrossRef][PubMed]
    [Google Scholar]
  40. Rodríguez-Moreno L., Barceló-Muñoz A., Ramos C.. ( 2008;). In vitro analysis of the interaction of Pseudomonas savastanoi pvs. savastanoi and nerii with micropropagated olive plants. . Phytopathology 98:, 815–822. [CrossRef][PubMed]
    [Google Scholar]
  41. Rodríguez-Moreno L., Jiménez A. J., Ramos C.. ( 2009;). Endopathogenic lifestyle of Pseudomonas savastanoi pv. savastanoi in olive knots. . Microb Biotechnol 2:, 476–488. [CrossRef][PubMed]
    [Google Scholar]
  42. Rodríguez-Palenzuela P., Matas I. M., Murillo J., López-Solanilla E., Bardaji L., Pérez-Martínez I., Rodríguez-Moskera M. E., Penyalver R., López M. M.. & other authors ( 2010;). Annotation and overview of the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. . Environ Microbiol 12:, 1604–1620.[PubMed]
    [Google Scholar]
  43. Rojas A. M., de Los Rios J. E., Fischer-Le Saux M., Jimenez P., Reche P., Bonneau S., Sutra L., Mathieu-Daudé F., McClelland M.. ( 2004;). Erwinia toletana sp. nov., associated with Pseudomonas savastanoi-induced tree knots. . Int J Syst Evol Microbiol 54:, 2217–2222. [CrossRef][PubMed]
    [Google Scholar]
  44. Roussos P. A., Pontikis C. A., Tsantili E.. ( 2002;). Root promoting compounds detected in olive knot extract in high quantities as a response to infection by the bacterium Pseudomonas savastanoi pv. savastanoi. . Plant Sci 163:, 533–541. [CrossRef]
    [Google Scholar]
  45. Savastano L.. ( 1886;). Les maladies de l’olivier, et la tuberculose en particulier. . C R Acad Agric Fr CIII:, 103–114.
    [Google Scholar]
  46. Schroth M. N., Osgood J. W., Miller T. D.. ( 1973;). Quantitative assessment of the effect of the olive knot disease on olive yield and quality. . Phytopathology 63:, 1064–1065. [CrossRef]
    [Google Scholar]
  47. Scortichini M., Rossi M. P., Salerno M.. ( 2004;). Relationship of genetic structure of Pseudomonas savastanoi pv. savastanoi populations from Italian olive trees and patterns of host genetic diversity. . Plant Pathol 53:, 491–497. [CrossRef]
    [Google Scholar]
  48. Sessitsch A., Hardoim P., Döring J., Weilharter A., Krause A., Woyke T., Mitter B., Hauberg-Lotte L., Friedrich F.. & other authors ( 2012;). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. . Mol Plant Microbe Interact 25:, 28–36. [CrossRef][PubMed]
    [Google Scholar]
  49. Stolyar S., Van Dien S., Hillesland K. L., Pinel N., Lie T. J., Leigh J. A., Stahl D. A.. ( 2007;). Metabolic modeling of a mutualistic microbial community. . Mol Syst Biol 3:, 92. [CrossRef][PubMed]
    [Google Scholar]
  50. Surico G., Iacobellis N. S., Sisto A.. ( 1985;). Studies on the role of indole-3-acetic acid and cytokinins in the formation of knots on olive and oleander plants by Pseudomonas syringae pv. savastanoi. . Physiol Plant Pathol 26:, 309–320. [CrossRef]
    [Google Scholar]
  51. Teviotdale B. L., Krueger W. H.. ( 2004;). Effects of timing of copper sprays, defoliation, rainfall, and inoculum concentration on incidence of olive knot disease. . Plant Dis 88:, 131–135. [CrossRef]
    [Google Scholar]
  52. Venturi V., da Silva D. P.. ( 2012;). Incoming pathogens team up with harmless ‘resident’ bacteria. . Trends Microbiol 20:, 160–164. [CrossRef][PubMed]
    [Google Scholar]
  53. Wang Z., Klipfell E., Bennett B. J., Koeth R., Levison B. S., Dugar B., Feldstein A. E., Britt E. B., Fu X.. & other authors ( 2011;). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. . Nature 472:, 57–63. [CrossRef][PubMed]
    [Google Scholar]
  54. Young J.. ( 2004;). Olive knot and its pathogens. . Australas Plant Pathol 33:, 33–39. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.074468-0
Loading
/content/journal/micro/10.1099/mic.0.074468-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error