1887

Abstract

Cyanobacteria are photoautotrophic prokaryotes that occur in highly variable environments. Protein phosphorylation is one of the most widespread means to adjust cell metabolism and gene expression to the demands of changing growth conditions. Using a 2D gel electrophoresis-based approach and a phosphoprotein-specific dye, we investigated the protein phosphorylation pattern in cells of the model cyanobacterium sp. strain PCC 6803. The comparison of gels stained for total and phosphorylated proteins revealed that approximately 5 % of the protein spots seemed to be phosphoproteins, from which 32 were identified using MALDI-TOF MS. For eight of them the phosphorylated amino acid residues were mapped by subsequent mass spectrometric investigations of isolated phosphopeptides. Among the phosphoproteins, we found regulatory proteins, mostly putative anti-sigma factor antagonists, and proteins involved in translation. Moreover, a number of enzymes catalysing steps in glycolysis or the Calvin–Benson cycle were found to be phosphorylated, implying that protein phosphorylation might represent an important mechanism for the regulation of the primary carbon metabolism in cyanobacterial cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.074443-0
2014-02-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/2/296.html?itemId=/content/journal/micro/10.1099/mic.0.074443-0&mimeType=html&fmt=ahah

References

  1. Agrawal G. K., Thelen J. J.. ( 2005;). Development of a simplified, economical polyacrylamide gel staining protocol for phosphoproteins. . Proteomics 5:, 4684–4688. [CrossRef][PubMed]
    [Google Scholar]
  2. Bendt A. K., Burkovski A., Schaffer S., Bott M., Farwick M., Hermann T.. ( 2003;). Towards a phosphoproteome map of Corynebacterium glutamicum.. Proteomics 3:, 1637–1646. [CrossRef][PubMed]
    [Google Scholar]
  3. Bernardini G., Laschi M., Serchi T., Arena S., D’Ambrosio C., Braconi D., Scaloni A., Santucci A.. ( 2011;). Mapping phosphoproteins in Neisseria meningitidis serogroup A. . Proteomics 11:, 1351–1358. [CrossRef][PubMed]
    [Google Scholar]
  4. Beuf L., Bédu S., Durand M. C., Joset F.. ( 1994;). A protein involved in co-ordinated regulation of inorganic carbon and glucose metabolism in the facultative photoautotrophic cyanobacterium Synechocystis PCC6803. . Plant Mol Biol 25:, 855–864. [CrossRef][PubMed]
    [Google Scholar]
  5. Binns N., Masters M.. ( 2002;). Expression of the Escherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU. . Mol Microbiol 44:, 1287–1298. [CrossRef][PubMed]
    [Google Scholar]
  6. Bloye S. A., Silman N. J., Mann N. H., Carr N. G.. ( 1992;). Bicarbonate concentration by Synechocystis PCC6803: modulation of protein phosphorylation and inorganic carbon transport by glucose. . Plant Physiol 99:, 601–606. [CrossRef][PubMed]
    [Google Scholar]
  7. Boël G., Pichereau V., Mijakovic I., Mazé A., Poncet S., Gillet S., Giard J. C., Hartke A., Auffray Y., Deutscher J.. ( 2004;). Is 2-phosphoglycerate-dependent automodification of bacterial enolases implicated in their export. ? J Mol Biol 337:, 485–496. [CrossRef][PubMed]
    [Google Scholar]
  8. Dong G. G., Kim Y. I., Golden S. S.. ( 2010;). Simplicity and complexity in the cyanobacterial circadian clock mechanism. . Curr Opin Genet Dev 20:, 619–625. [CrossRef][PubMed]
    [Google Scholar]
  9. El-Fahmawi B., Owttrim G. W.. ( 2007;). Cold-stress-altered phosphorylation of EF-Tu in the cyanobacterium Anabaena sp. strain PCC 7120. . Can J Microbiol 53:, 551–558. [CrossRef][PubMed]
    [Google Scholar]
  10. Eymann C., Becher D., Bernhardt J., Gronau K., Klutzny A., Hecker M.. ( 2007;). Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis.. Proteomics 7:, 3509–3526. [CrossRef][PubMed]
    [Google Scholar]
  11. Forchhammer K.. ( 2010;). The network of P(II) signalling protein interactions in unicellular cyanobacteria. . Adv Exp Med Biol 675:, 71–90. [CrossRef][PubMed]
    [Google Scholar]
  12. Forchhammer K., Tandeau de Marsac N.. ( 1995;). Phosphorylation of the PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942: analysis of in vitro kinase activity. . J Bacteriol 177:, 5812–5817.[PubMed]
    [Google Scholar]
  13. Fulda S., Mikkat S., Huang F., Huckauf J., Marin K., Norling B., Hagemann M.. ( 2006;). Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. . Proteomics 6:, 2733–2745. [CrossRef][PubMed]
    [Google Scholar]
  14. Galkin A. N., Mikheeva L. E., Shestakov S. V.. ( 2003;). The insertional inactivation of genes encoding eukaryotic-type serine/threonine protein kinases in the cyanobacterium Synechocystis sp. PCC 6803. . Microbiology (English translation of Microbiologiya) 72:, 52–57. [CrossRef]
    [Google Scholar]
  15. Ge R. G., Sun X. S., Xiao C. L., Yin X. F., Shan W. R., Chen Z., He Q. Y.. ( 2011;). Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins. . Proteomics 11:, 1449–1461. [CrossRef][PubMed]
    [Google Scholar]
  16. Hagemann M., Golldack D., Biggins J., Erdmann N.. ( 1993;). Salt-dependent protein phosphorylation in the cyanobacterium Synechocystis PCC 6803. . FEMS Microbiol Lett 113:, 205–209. [CrossRef]
    [Google Scholar]
  17. Huckauf J., Nomura C., Forchhammer K., Hagemann M.. ( 2000;). Stress responses of Synechocystis sp. strain PCC 6803 mutants impaired in genes encoding putative alternative sigma factors. . Microbiology 146:, 2877–2889.[PubMed]
    [Google Scholar]
  18. Ishino Y., Okada H., Ikeuchi M., Taniguchi H.. ( 2007;). Mass spectrometry-based prokaryote gene annotation. . Proteomics 7:, 4053–4065. [CrossRef][PubMed]
    [Google Scholar]
  19. Kamei A., Yuasa T., Orikawa K., Geng X. X., Ikeuchi M.. ( 2001;). A eukaryotic-type protein kinase, SpkA, is required for normal motility of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. . J Bacteriol 183:, 1505–1510. [CrossRef][PubMed]
    [Google Scholar]
  20. Kamei A., Yuasa T., Geng X. X., Ikeuchi M.. ( 2002;). Biochemical examination of the potential eukaryotic-type protein kinase genes in the complete genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803. . DNA Res 9:, 71–78. [CrossRef][PubMed]
    [Google Scholar]
  21. Kamei A., Yoshihara S., Yuasa T., Geng X., Ikeuchi M.. ( 2003;). Biochemical and functional characterization of a eukaryotic-type protein kinase, SpkB, in the cyanobacterium, Synechocystis sp. PCC 6803. . Curr Microbiol 46:, 296–301. [CrossRef][PubMed]
    [Google Scholar]
  22. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M.. & other authors ( 1996;). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. . DNA Res 3:, 109–136. [CrossRef][PubMed]
    [Google Scholar]
  23. Kondo T.. ( 2007;). A cyanobacterial circadian clock based on the Kai oscillator. . Cold Spring Harb Symp Quant Biol 72:, 47–55. [CrossRef][PubMed]
    [Google Scholar]
  24. Koponen J., Laakso K., Koskenniemi K., Kankainen M., Savijoki K., Nyman T. A., de Vos W. M., Tynkkynen S., Kalkkinen N., Varmanen P.. ( 2012;). Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. . J Proteomics 75:, 1357–1374. [CrossRef][PubMed]
    [Google Scholar]
  25. Kucho K., Okamoto K., Tsuchiya Y., Nomura S., Nango M., Kanehisa M., Ishiura M.. ( 2005;). Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. . J Bacteriol 187:, 2190–2199. [CrossRef][PubMed]
    [Google Scholar]
  26. Larsen M. R., Thingholm T. E., Jensen O. N., Roepstorff P., Jørgensen T. J. D.. ( 2005;). Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. . Mol Cell Proteomics 4:, 873–886. [CrossRef][PubMed]
    [Google Scholar]
  27. Laurent S., Jang J., Janicki A., Zhang C. C., Bédu S.. ( 2008;). Inactivation of spkD, encoding a Ser/Thr kinase, affects the pool of the TCA cycle metabolites in Synechocystis sp. strain PCC 6803. . Microbiology 154:, 2161–2167. [CrossRef][PubMed]
    [Google Scholar]
  28. Lomas-Lopez R., Paracuellos P., Riberty M., Cozzone A. J., Duclos B.. ( 2007;). Several enzymes of the central metabolism are phosphorylated in Staphylococcus aureus.. FEMS Microbiol Lett 272:, 35–42. [CrossRef][PubMed]
    [Google Scholar]
  29. Macek B., Mijakovic I.. ( 2011;). Site-specific analysis of bacterial phosphoproteomes. . Proteomics 11:, 3002–3011. [CrossRef][PubMed]
    [Google Scholar]
  30. Macek B., Mijakovic I., Olsen J. V., Gnad F., Kumar C., Jensen P. R., Mann M.. ( 2007;). The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis.. Mol Cell Proteomics 6:, 697–707. [CrossRef][PubMed]
    [Google Scholar]
  31. Macek B., Gnad F., Soufi B., Kumar C., Olsen J. V., Mijakovic I., Mann M.. ( 2008;). Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. . Mol Cell Proteomics 7:, 299–307. [CrossRef][PubMed]
    [Google Scholar]
  32. Mann N. H.. ( 1994;). Protein phosphorylation in cyanobacteria. . Microbiology 140:, 3207–3215. [CrossRef][PubMed]
    [Google Scholar]
  33. Mann H. N., Newmann J.. ( 1999;). Phosphorylation of beta-phycocyanin in Synechocystis sp. PCC 6803. . In The Phototrophic Prokaryotes, pp. 71–75. Edited by Peschek G. A., Löffelhardt W., Schmetterer G... New York:: Kluwer Academic/Plenum Publisher;. [CrossRef]
    [Google Scholar]
  34. Mann N. H., Rippka R., Herdman M.. ( 1991;). Regulation of protein phosphorylation in the cyanobacterium Anabaena strain PCC 7120. . J Gen Microbiol 137:, 331–339. [CrossRef]
    [Google Scholar]
  35. Manteca A., Ye J., Sánchez J., Jensen O. N.. ( 2011;). Phosphoproteome analysis of Streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation. . J Proteome Res 10:, 5481–5492. [CrossRef][PubMed]
    [Google Scholar]
  36. McCarthy J., Hopwood F., Oxley D., Laver M., Castagna A., Righetti P. G., Williams K., Herbert B.. ( 2003;). Carbamylation of proteins in 2-D electrophoresis – myth or reality. ? J Proteome Res 2:, 239–242. [CrossRef][PubMed]
    [Google Scholar]
  37. Mikkat S., Lorenz P., Scharf C., Yu X. H., Glocker M. O., Ibrahim S. M.. ( 2010;). MS characterization of qualitative protein polymorphisms in the spinal cords of inbred mouse strains. . Proteomics 10:, 1050–1062.[PubMed]
    [Google Scholar]
  38. Misra S. K., Milohanic E., Aké F., Mijakovic I., Deutscher J., Monnet V., Henry C.. ( 2011;). Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium Listeria monocytogenes reveals phosphorylated proteins related to virulence. . Proteomics 11:, 4155–4165. [CrossRef][PubMed]
    [Google Scholar]
  39. Mukhopadhyay A., Kennelly P. J.. ( 2011;). A low molecular weight protein tyrosine phosphatase from Synechocystis sp. strain PCC 6803: enzymatic characterization and identification of its potential substrates. . J Biochem 149:, 551–562. [CrossRef][PubMed]
    [Google Scholar]
  40. Nakajima M., Imai K., Ito H., Nishiwaki T., Murayama Y., Iwasaki H., Oyama T., Kondo T.. ( 2005;). Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro.. Science 308:, 414–415. [CrossRef][PubMed]
    [Google Scholar]
  41. Neuhoff V., Arold N., Taube D., Ehrhardt W.. ( 1988;). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. . Electrophoresis 9:, 255–262. [CrossRef][PubMed]
    [Google Scholar]
  42. Nikkinen H. L., Hakkila K., Gunnelius L., Huokko T., Pollari M., Tyystjärvi T.. ( 2012;). The SigB σ factor regulates multiple salt acclimation responses of the cyanobacterium Synechocystis sp. PCC 6803. . Plant Physiol 158:, 514–523. [CrossRef][PubMed]
    [Google Scholar]
  43. Oliveira P., Lindblad P.. ( 2008;). An AbrB-like protein regulates the expression of the bidirectional hydrogenase in Synechocystis sp. strain PCC 6803. . J Bacteriol 190:, 1011–1019. [CrossRef][PubMed]
    [Google Scholar]
  44. Osanai T., Imashimizu M., Seki A., Sato S., Tabata S., Imamura S., Asayama M., Ikeuchi M., Tanaka K.. ( 2009;). ChlH, the H subunit of the Mg-chelatase, is an anti-sigma factor for SigE in Synechocystis sp. PCC 6803. . Proc Natl Acad Sci U S A 106:, 6860–6865. [CrossRef][PubMed]
    [Google Scholar]
  45. Osanai T., Oikawa A., Azuma M., Tanaka K., Saito K., Hirai M. Y., Ikeuchi M.. ( 2011;). Genetic engineering of group 2 sigma factor SigE widely activates expressions of sugar catabolic genes in Synechocystis species PCC 6803. . J Biol Chem 286:, 30962–30971. [CrossRef][PubMed]
    [Google Scholar]
  46. Pattanayek R., Mori T., Xu Y., Pattanayek S., Johnson C. H., Egli M.. ( 2009;). Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase, ATPase and phosphatase. . PLoS ONE 4:, e7529. [CrossRef][PubMed]
    [Google Scholar]
  47. Piven I., Ajlani G., Sokolenko A.. ( 2005;). Phycobilisome linker proteins are phosphorylated in Synechocystis sp. PCC 6803. . J Biol Chem 280:, 21667–21672. [CrossRef][PubMed]
    [Google Scholar]
  48. Sanders C. E., Melis A., Allen J. F.. ( 1989;). In vivo phosphorylation of proteins in the cyanobacterium Synechococcus 6301 after chromatic acclimation to photosystem-I or photosystem-II light. . Biochim Biophys Acta 976:, 168–172. [CrossRef]
    [Google Scholar]
  49. Schmidl S. R., Gronau K., Pietack N., Hecker M., Becher D., Stülke J.. ( 2010;). The phosphoproteome of the minimal bacterium Mycoplasma pneumoniae: analysis of the complete known Ser/Thr kinome suggests the existence of novel kinases. . Mol Cell Proteomics 9:, 1228–1242. [CrossRef][PubMed]
    [Google Scholar]
  50. Shalev-Malul G., Lieman-Hurwitz J., Viner-Mozzini Y., Sukenik A., Gaathon A., Lebendiker M., Kaplan A.. ( 2008;). An AbrB-like protein might be involved in the regulation of cylindrospermopsin production by Aphanizomenon ovalisporum.. Environ Microbiol 10:, 988–999. [CrossRef][PubMed]
    [Google Scholar]
  51. Shi L., Bischoff K. M., Kennelly P. J.. ( 1999;). The icfG gene cluster of Synechocystis sp. strain PCC 6803 encodes an Rsb/Spo-like protein kinase, protein phosphatase, and two phosphoproteins. . J Bacteriol 181:, 4761–4767.[PubMed]
    [Google Scholar]
  52. Shih P. M., Wu D. Y., Latifi A., Axen S. D., Fewer D. P., Talla E., Calteau A., Cai F., Tandeau de Marsac N.. & other authors ( 2013;). Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. . Proc Natl Acad Sci U S A 110:, 1053–1058. [CrossRef][PubMed]
    [Google Scholar]
  53. Singh A. K., Li H., Sherman L. A.. ( 2004;). Microarray analysis and redox control of gene expression in the cyanobacterium Synechocystis sp. PCC 6803. . Physiol Plant 120:, 27–35. [CrossRef][PubMed]
    [Google Scholar]
  54. Soufi B., Gnad F., Jensen P. R., Petranovic D., Mann M., Mijakovic I., Macek B.. ( 2008;). The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. . Proteomics 8:, 3486–3493. [CrossRef][PubMed]
    [Google Scholar]
  55. Spreitzer R. J., Salvucci M. E.. ( 2002;). Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. . Annu Rev Plant Biol 53:, 449–475. [CrossRef][PubMed]
    [Google Scholar]
  56. Steinberg T. H., Agnew B. J., Gee K. R., Leung W. Y., Goodman T., Schulenberg B., Hendrickson J., Beechem J. M., Haugland R. P., Patton W. F.. ( 2003;). Global quantitative phosphoprotein analysis using multiplexed proteomics technology. . Proteomics 3:, 1128–1144. [CrossRef][PubMed]
    [Google Scholar]
  57. Summerfield T. C., Sherman L. A.. ( 2008;). Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment. . Appl Environ Microbiol 74:, 5276–5284. [CrossRef][PubMed]
    [Google Scholar]
  58. Voisin S., Watson D. C., Tessier L., Ding W., Foote S., Bhatia S., Kelly J. F., Young N. M.. ( 2007;). The cytoplasmic phosphoproteome of the Gram-negative bacterium Campylobacter jejuni: evidence for modification by unidentified protein kinases. . Proteomics 7:, 4338–4348. [CrossRef][PubMed]
    [Google Scholar]
  59. Wegener K. M., Welsh E. A., Thornton L. E., Keren N., Jacobs J. M., Hixson K. K., Monroe M. E., Camp D. G. II, Smith R. D., Pakrasi H. B.. ( 2008;). High sensitivity proteomics assisted discovery of a novel operon involved in the assembly of photosystem II, a membrane protein complex. . J Biol Chem 283:, 27829–27837. [CrossRef][PubMed]
    [Google Scholar]
  60. Wiegard A., Dörrich A. K., Deinzer H. T., Beck C., Wilde A., Holtzendorff J., Axmann I. M.. ( 2013;). Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence. . Microbiology 159:, 948–958. [CrossRef][PubMed]
    [Google Scholar]
  61. Yamauchi Y., Kaniya Y., Kaneko Y., Hihara Y.. ( 2011;). Physiological roles of the cyAbrB transcriptional regulator pair Sll0822 and Sll0359 in Synechocystis sp. strain PCC 6803. . J Bacteriol 193:, 3702–3709. [CrossRef][PubMed]
    [Google Scholar]
  62. Yang M. K., Qiao Z. X., Zhang W. Y., Xiong Q., Zhang J., Li T., Ge F., Zhao J. D.. ( 2013;). Global phosphoproteomic analysis reveals diverse functions of serine/threonine/tyrosine phosphorylation in the model cyanobacterium Synechococcus sp. strain PCC 7002. . J Proteome Res 12:, 1909–1923. [CrossRef][PubMed]
    [Google Scholar]
  63. Zhang C. C., Jang J. C., Sakr S., Wang L.. ( 2005;). Protein phosphorylation on Ser, Thr and Tyr residues in cyanobacteria. . J Mol Microbiol Biotechnol 9:, 154–166. [CrossRef][PubMed]
    [Google Scholar]
  64. Zorina A., Stepanchenko N., Novikova G. V., Sinetova M., Panichkin V. B., Moshkov I. E., Zinchenko V. V., Shestakov S. V., Suzuki I.. & other authors ( 2011;). Eukaryotic-like Ser/Thr protein kinases SpkC/F/K are involved in phosphorylation of GroES in the cyanobacterium Synechocystis.. DNA Res 18:, 137–151. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.074443-0
Loading
/content/journal/micro/10.1099/mic.0.074443-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error