1887

Abstract

Cystic fibrosis (CF) is a recessive genetic disease characterized by chronic respiratory infections and inflammation causing permanent lung damage. Recurrent infections are caused by Gram-negative antibiotic-resistant bacterial pathogens such as , complex (Bcc) and the emerging pathogen genus . In this study, the interactions between co-colonizing CF pathogens were investigated. Both and Bcc elicited potent pro-inflammatory responses that were significantly greater than . The original aim was to examine whether combinations of pro-inflammatory pathogens would further exacerbate inflammation. In contrast, when these pathogens were colonized in the presence of the pro-inflammatory response was significantly decreased. Real-time PCR quantification of bacterial DNA from mixed cultures indicated that significantly inhibited the growth of , , and , which may be a factor in its dominance as a colonizer of CF patients. cell-free supernatant also suppressed growth of these pathogens, indicating that inhibition was innate rather than a response to the presence of a competitor. Screening of a mutant library highlighted a role for quorum sensing and pyoverdine biosynthesis genes in the inhibition of . Pyoverdine was confirmed to contribute to the inhibition of strain J2315. was the only species that could significantly inhibit growth. also inhibited and . In conclusion, both and are capable of suppressing growth and virulence of co-colonizing CF pathogens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.074203-0
2014-07-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1474.html?itemId=/content/journal/micro/10.1099/mic.0.074203-0&mimeType=html&fmt=ahah

References

  1. Atkinson R. M., Lipuma J. J., Rosenbluth D. B., Dunne W. M. Jr. ( 2006;). Chronic colonization with Pandoraea apista in cystic fibrosis patients determined by repetitive-element-sequence PCR. J Clin Microbiol44:833–836 [CrossRef][PubMed]
    [Google Scholar]
  2. Bamford S., Ryley H., Jackson S. K.. ( 2007;). Highly purified lipopolysaccharides from Burkholderia cepacia complex clinical isolates induce inflammatory cytokine responses via TLR4-mediated MAPK signalling pathways and activation of NFκB. Cell Microbiol9:532–543 [CrossRef][PubMed]
    [Google Scholar]
  3. Bandara H. M., Yau J. Y., Watt R. M., Jin L. J., Samaranayake L. P.. ( 2010;). Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development. BMC Microbiol10:125 [CrossRef][PubMed]
    [Google Scholar]
  4. Banu O., Bleotu C., Chifiriuc M. C., Savu B., Stanciu G., Antal C., Alexandrescu M., Lazăr V.. ( 2011;). Virulence factors of Staphylococcus aureus and Pseudomonas aeruginosa strains involved in the etiology of cardiovascular infections. Biointerface Res Appl Chem1:072–077
    [Google Scholar]
  5. Baysse C., De Vos D., Naudet Y., Vandermonde A., Ochsner U., Meyer J.-M., Budzikiewicz H., Schäfer M., Fuchs R., Cornelis P.. ( 2000;). Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa . Microbiology146:2425–2434[PubMed]
    [Google Scholar]
  6. Becerra M. C., Eraso A. J., Albesa I.. ( 2003;). Comparison of oxidative stress induced by ciprofloxacin and pyoverdin in bacteria and in leukocytes to evaluate toxicity. Luminescence18:334–340 [CrossRef][PubMed]
    [Google Scholar]
  7. Bevivino A., Pirone L., Pilkington R., Cifani N., Dalmastri C., Callaghan M., Ascenzioni F., McClean S.. ( 2012;). Interaction of environmental Burkholderia cenocepacia strains with cystic fibrosis and non-cystic fibrosis bronchial epithelial cells in vitro . Microbiology158:1325–1333 [CrossRef][PubMed]
    [Google Scholar]
  8. Bonfield T. L., Panuska J. R., Konstan M. W., Hilliard K. A., Hilliard J. B., Ghnaim H., Berger M.. ( 1995;). Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med152:2111–2118 [CrossRef][PubMed]
    [Google Scholar]
  9. Bragonzi A., Farulla I., Paroni M., Twomey K. B., Pirone L., Lorè N. I., Bianconi I., Dalmastri C., Ryan R. P., Bevivino A.. ( 2012;). Modelling co-infection of the cystic fibrosis lung by Pseudomonas aeruginosa and Burkholderia cenocepacia reveals influences on biofilm formation and host response. PLoS ONE7:e52330 [CrossRef][PubMed]
    [Google Scholar]
  10. Bredenbruch F., Geffers R., Nimtz M., Buer J., Häussler S.. ( 2006;). The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol8:1318–1329 [CrossRef][PubMed]
    [Google Scholar]
  11. Caraher E., Collins J., Herbert G., Murphy P. G., Gallagher C. G., Crowe M. J., Callaghan M., McClean S.. ( 2008;). Evaluation of in vitro virulence characteristics of the genus Pandoraea in lung epithelial cells. J Med Microbiol57:15–20 [CrossRef][PubMed]
    [Google Scholar]
  12. Coenye T., Falsen E., Hoste B., Ohlén M., Goris J., Govan J. R., Gillis M., Vandamme P.. ( 2000;). Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov.. Int J Syst Evol Microbiol50:887–899 [CrossRef][PubMed]
    [Google Scholar]
  13. Costello A., Herbert G., Fabunmi L., Schaffer K., Kavanagh K. A., Caraher E. M., Callaghan M., McClean S.. ( 2011;). Virulence of an emerging respiratory pathogen, genus Pandoraea, in vivo and its interactions with lung epithelial cells. J Med Microbiol60:289–299 [CrossRef][PubMed]
    [Google Scholar]
  14. Courtney J. M., Dunbar K. E., McDowell A., Moore J. E., Warke T. J., Stevenson M., Elborn J. S.. ( 2004;). Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis adults. J Cyst Fibros3:93–98 [CrossRef][PubMed]
    [Google Scholar]
  15. Cox M. J., Allgaier M., Taylor B., Baek M. S., Huang Y. J., Daly R. A., Karaoz U., Andersen G. L., Brown R.. & other authors ( 2010;). Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS ONE5:e11044 [CrossRef][PubMed]
    [Google Scholar]
  16. Daneshvar M. I., Hollis D. G., Steigerwalt A. G., Whitney A. M., Spangler L., Douglas M. P., Jordan J. G., MacGregor J. P., Hill B. C.. & other authors ( 2001;). Assignment of CDC weak oxidizer group 2 (WO-2) to the genus Pandoraea and characterization of three new Pandoraea genomospecies. J Clin Microbiol39:1819–1826 [CrossRef][PubMed]
    [Google Scholar]
  17. De Soyza A., Meachery G., Hester K. L., Nicholson A., Parry G., Tocewicz K., Pillay T., Clark S., Lordan J. L.. & other authors ( 2010;). Lung transplantation for patients with cystic fibrosis and Burkholderia cepacia complex infection: a single-center experience. J Heart Lung Transplant29:1395–1404 [CrossRef][PubMed]
    [Google Scholar]
  18. De Soyza A., Hall A. J., Mahenthiralingam E., Drevinek P., Kaca W., Drulis-Kawa Z., Stoitsova S. R., Toth V., Coenye T.. & other authors ( 2013;). Developing an international Pseudomonas aeruginosa reference panel. Microbiology Open21010–1023[CrossRef]
    [Google Scholar]
  19. Diggle S. P., Matthijs S., Wright V. J., Fletcher M. P., Chhabra S. R., Lamont I. L., Kong X., Hider R. C., Cornelis P.. & other authors ( 2007;). The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol14:87–96 [CrossRef][PubMed]
    [Google Scholar]
  20. Drevinek P., Mahenthiralingam E.. ( 2010;). Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect16:821–830 [CrossRef][PubMed]
    [Google Scholar]
  21. Duan K., Sibley C. D., Davidson C. J., Surette M. G.. ( 2009;). Chemical interactions between organisms in microbial communities. Contrib Microbiol16:1–17 [CrossRef][PubMed]
    [Google Scholar]
  22. Govan J. R., Brown A. R., Jones A. M.. ( 2007;). Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol2:153–164 [CrossRef][PubMed]
    [Google Scholar]
  23. Holcombe L. J., McAlester G., Munro C. A., Enjalbert B., Brown A. J., Gow N. A., Ding C., Butler G., O’Gara F., Morrissey J. P.. ( 2010;). Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans . Microbiology156:1476–1486 [CrossRef][PubMed]
    [Google Scholar]
  24. Jones A. M., Dodd M. E., Webb A. K..( 2001;). Burkholderia cepacia: current clinical issues, environmental controversies and ethical dilemmas. Eur Respir J17:295–301[CrossRef]
    [Google Scholar]
  25. Jørgensen I. M., Johansen H. K., Frederiksen B., Pressler T., Hansen A., Vandamme P., Høiby N., Koch C.. ( 2003;). Epidemic spread of Pandoraea apista, a new pathogen causing severe lung disease in cystic fibrosis patients. Pediatr Pulmonol36:439–446 [CrossRef][PubMed]
    [Google Scholar]
  26. Kaza S. K., McClean S., Callaghan M.. ( 2011;). IL-8 released from human lung epithelial cells induced by cystic fibrosis pathogens Burkholderia cepacia complex affects the growth and intracellular survival of bacteria. Int J Med Microbiol301:26–33 [CrossRef][PubMed]
    [Google Scholar]
  27. Kim K., Kim S. H., Lépine F., Cho Y. H., Lee G. R.. ( 2010a;). Global gene expression analysis on the target genes of PQS and HHQ in J774A.1 monocyte/macrophage cells. Microb Pathog49:174–180 [CrossRef][PubMed]
    [Google Scholar]
  28. Kim K., Kim Y. U., Koh B. H., Hwang S. S., Kim S. H., Lépine F., Cho Y. H., Lee G. R.. ( 2010b;). HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-κB pathway. Immunology129:578–588 [CrossRef][PubMed]
    [Google Scholar]
  29. Lau G. W., Hassett D. J., Ran H., Kong F.. ( 2004;). The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med10:599–606 [CrossRef][PubMed]
    [Google Scholar]
  30. Laursen J. B., Nielsen J.. ( 2004;). Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev104:1663–1686 [CrossRef][PubMed]
    [Google Scholar]
  31. Lavigne J.-P., Nicolas-Chanoine M.-H., Bourg G., Moreau J., Sotto A.. ( 2008;). Virulent synergistic effect between Enterococcus faecalis and Escherichia coli assayed by using the Caenorhabditis elegans model. PLoS ONE3:e3370 [CrossRef][PubMed]
    [Google Scholar]
  32. Legendre C., Reen F. J., Mooij M. J., McGlacken G. P., Adams C., O’Gara F.. ( 2012;). Pseudomonas aeruginosa alkyl quinolones repress hypoxia-inducible factor 1 (HIF-1) signaling through HIF-1α degradation. Infect Immun80:3985–3992 [CrossRef][PubMed]
    [Google Scholar]
  33. Lewenza S., Visser M. B., Sokol P. A.. ( 2002;). Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa . Can J Microbiol48:707–716 [CrossRef][PubMed]
    [Google Scholar]
  34. Liberati N. T., Urbach J. M., Miyata S., Lee D. G., Drenkard E., Wu G., Villanueva J., Wei T., Ausubel F. M.. ( 2006;). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A103:2833–2838 [CrossRef][PubMed]
    [Google Scholar]
  35. LiPuma J. J.. ( 2010;). The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev23:299–323 [CrossRef][PubMed]
    [Google Scholar]
  36. Machen T. E.. ( 2006;). Innate immune response in CF airway epithelia: hyperinflammatory?. Am J Physiol Cell Physiol291:C218–C230 [CrossRef][PubMed]
    [Google Scholar]
  37. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P.. ( 2000;). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol38:910–913[PubMed]
    [Google Scholar]
  38. Mahenthiralingam E., Song L., Sass A., White J., Wilmot C., Marchbank A., Boaisha O., Paine J., Knight D., Challis G. L.. ( 2011;). Enacyloxins are products of an unusual hybrid modular polyketide synthase encoded by a cryptic Burkholderia ambifaria genomic island. Chem Biol18:665–677 [CrossRef][PubMed]
    [Google Scholar]
  39. Masyahit M., Sijam K., Awang Y., Satar M. G. M.. ( 2009;). In vitro assay of factors affecting the growth of pathogens associated with diseases on dragon fruit (Hylocereus spp.) in peninsular Malaysia. Plant Pathol J8:144–151 [CrossRef]
    [Google Scholar]
  40. Mazzola M., Cook R. J., Thomashow L. S., Weller D. M., Pierson L. S. III. ( 1992;). Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol58:2616–2624[PubMed]
    [Google Scholar]
  41. Medeiros A. A., O’Brien T. F., Wacker W. E., Yulug N. F.. ( 1971;). Effect of salt concentration on the apparent in-vitro susceptibility of Pseudomonas and other gram-negative bacilli to gentamicin. J Infect Dis124:SupplS59–S64 [CrossRef][PubMed]
    [Google Scholar]
  42. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M.. ( 1995;). Common virulence factors for bacterial pathogenicity in plants and animals. Science268:1899–1902 [CrossRef][PubMed]
    [Google Scholar]
  43. Reen F. J., Mooij M. J., Holcombe L. J., McSweeney C. M., McGlacken G. P., Morrissey J. P., O’Gara F.. ( 2011;). The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour. FEMS Microbiol Ecol77:413–428 [CrossRef][PubMed]
    [Google Scholar]
  44. Reen F. J., Clarke S. L., Legendre C., McSweeney C. M., Eccles K. S., Lawrence S. E., O’Gara F., McGlacken G. P.. ( 2012;). Structure-function analysis of the C-3 position in analogues of microbial behavioural modulators HHQ and PQS. Org Biomol Chem10:8903–8910 [CrossRef][PubMed]
    [Google Scholar]
  45. Riedel K., Hentzer M., Geisenberger O., Huber B., Steidle A., Wu H., Høiby N., Givskov M., Molin S., Eberl L.. ( 2001;). N-Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology147:3249–3262[PubMed]
    [Google Scholar]
  46. Sahin N., Tani A., Kotan R., Sedlácek I., Kimbara K., Tamer A. U.. ( 2011;). Pandoraea oxalativorans sp. nov., Pandoraea faecigallinarum sp. nov. and Pandoraea vervacti sp. nov., isolated from oxalate-enriched culture. Int J Syst Evol Microbiol61:2247–2253 [CrossRef][PubMed]
    [Google Scholar]
  47. Schneider I., Queenan A. M., Bauernfeind A.. ( 2006;). Novel carbapenem-hydrolyzing oxacillinase OXA-62 from Pandoraea pnomenusa . Antimicrob Agents Chemother50:1330–1335 [CrossRef][PubMed]
    [Google Scholar]
  48. Sibley C. D., Duan K., Fischer C., Parkins M. D., Storey D. G., Rabin H. R., Surette M. G.. ( 2008;). Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog4:e1000184 [CrossRef][PubMed]
    [Google Scholar]
  49. Sibley C. D., Grinwis M. E., Field T. R., Eshaghurshan C. S., Faria M. M., Dowd S. E., Parkins M. D., Rabin H. R., Surette M. G.. ( 2011;). Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS ONE6:e22702 [CrossRef][PubMed]
    [Google Scholar]
  50. Stryjewski M. E., LiPuma J. J., Messier R. H. Jr, Reller L. B., Alexander B. D.. ( 2003;). Sepsis, multiple organ failure, and death due to Pandoraea pnomenusa infection after lung transplantation. J Clin Microbiol41:2255–2257 [CrossRef][PubMed]
    [Google Scholar]
  51. Treat J., James W. D., Nachamkin I., Seykora J. T.. ( 2007;). Growth inhibition of Trichophyton species by Pseudomonas aeruginosa . Arch Dermatol143:61–64 [CrossRef][PubMed]
    [Google Scholar]
  52. Visca P., Imperi F., Lamont I. L.. ( 2007;). Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol15:22–30 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.074203-0
Loading
/content/journal/micro/10.1099/mic.0.074203-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error