1887

Abstract

The application of plant-growth-promoting rhizobacteria (PGPR) at field scale has been hindered by an inadequate understanding of the mechanisms that enhance plant growth, rhizosphere incompetence and the inability of bacterial strains to thrive in different soil types and environmental conditions. Actinobacteria with their sporulation, nutrient cycling, root colonization, bio-control and other plant-growth-promoting activities could be potential field bio-inoculants. We report the isolation of five rhizospheric and two root endophytic actinobacteria from (wheat) plants. The cultures exhibited plant-growth-promoting activities, namely phosphate solubilization (1916 mg l), phytase (0.68 U ml), chitinase (6.2 U ml), indole-3-acetic acid (136.5 mg l) and siderophore (47.4 mg l) production, as well as utilizing all the rhizospheric sugars under test. Malate (50–55 mmol l) was estimated in the culture supernatant of the highest phosphate solublizer, mhcr0816. The mechanism of malate overproduction was studied by gene expression and assays of key glyoxalate cycle enzymes – isocitrate dehydrogenase (IDH), isocitrate lyase (ICL) and malate synthase (MS). The significant increase in gene expression (ICL fourfold, MS sixfold) and enzyme activity (ICL fourfold, MS tenfold) of ICL and MS during stationary phase resulted in malate production as indicated by lowered pH (2.9) and HPLC analysis (retention time 13.1 min). Similarly, the secondary metabolites for chitinase-independent biocontrol activity of mhcr0817, as identified by GC-MS and H-NMR spectra, were isoforms of pyrrole derivatives. The inoculation of actinobacterial isolate mhce0811 in (wheat) significantly improved plant growth, biomass (33 %) and mineral (Fe, Mn, P) content in non-axenic conditions. Thus the actinobacterial isolates reported here were efficient PGPR possessing significant antifungal activity and may have potential field applications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.074146-0
2014-04-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/778.html?itemId=/content/journal/micro/10.1099/mic.0.074146-0&mimeType=html&fmt=ahah

References

  1. Alexander M. . ( 1977; ). Microbiology of the rhizosphere. . In Introduction to Soil Microbiology, pp. 423–437. Edited by Alexander M. . . Chichester:: Wiley;.
    [Google Scholar]
  2. Ames B. N. . ( 1964; ). Assay of inorganic phosphate, total phosphate and phosphatases. . Methods Enzymol 8:, 115–118. [CrossRef]
    [Google Scholar]
  3. Be˘hal V. . ( 2000; ). Bioactive products from Streptomyces . . Adv Appl Microbiol 47:, 113–156. [CrossRef] [PubMed]
    [Google Scholar]
  4. Beyeler M. , Keel C. , Michaux P. , Haas D. . ( 1999; ). Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHAO affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. . FEMS Microbiol Ecol 28:, 225–233. [CrossRef]
    [Google Scholar]
  5. Boone C. J. , Pine L. . ( 1968; ). Rapid method for characterization of actinomycetes by cell wall composition. . Appl Microbiol 16:, 279–284.[PubMed]
    [Google Scholar]
  6. Brent E. , Bergmeyer H. U. . ( 1974; ). Isocitrate dehydrogenase. . In Methods of Enzymatic Analysis, vol. 2, pp. 624–627. Edited by Bergmeyer H. U. . . New York:: Academic Press;.
    [Google Scholar]
  7. Bric J. M. , Bostock R. M. , Silverstone S. E. . ( 1991; ). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. . Appl Environ Microbiol 57:, 535–538.[PubMed]
    [Google Scholar]
  8. Chan M. , Sim T.-S. . ( 1998; ). Malate synthase from Streptomyces clavuligerus NRRL3585: cloning, molecular characterization and its control by acetate. . Microbiology 144:, 3229–3237. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chell R. M. , Sundaram T. K. , Wilkinson A. E. . ( 1978; ). Isolation and characterization of isocitrate lyase from a thermophilic Bacillus sp. . Biochem J 173:, 165–177.[PubMed]
    [Google Scholar]
  10. Chen Y. P. , Rekha P. D. , Arun A. B. , Shen F. T. , Lai W.-A. , Young C. C. . ( 2006; ). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. . Appl Soil Ecol 34:, 33–41. [CrossRef]
    [Google Scholar]
  11. Coombs J. T. , Franco C. M. M. . ( 2003; ). Visualization of an endophytic Streptomyces species in wheat seed. . Appl Environ Microbiol 69:, 4260–4262. [CrossRef] [PubMed]
    [Google Scholar]
  12. Crawford D. L. , Lynch J. M. , Whipps J. M. , Ousley M. A. . ( 1993; ). Isolation and characterization of actinomycete antagonists of a fungal root pathogen. . Appl Environ Microbiol 59:, 3899–3905.[PubMed]
    [Google Scholar]
  13. Cross T. . ( 1989; ). Growth and examination of actinomycetes – some guidelines. . In Bergey’s Manual of Systematic Bacteriology, vol. 4, pp. 2340–2343. Edited by Williams S. T. , Sharpe M. E. , Holt J. G. . . Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  14. Dash S. , Jin C. , Lee O. O. , Xu Y. , Qian P. Y. . ( 2009; ). Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. . J Ind Microbiol Biotechnol 36:, 1047–1056. [CrossRef] [PubMed]
    [Google Scholar]
  15. Doumbou C. L. , Hamby Salove M. K. , Crawford D. L. , Beaulieu C. . ( 2001; ). Actinomycetes, promising tools to control plant diseases and to promote plant growth. . Phytoprotection 82:, 85–102. [CrossRef]
    [Google Scholar]
  16. Engelen A. J. , van der Heeft F. C. , Randsdorp P. H. G. , Smit E. L. C. . ( 1994; ). Simple and rapid determination of phytase activity. . J AOAC Int 77:, 760–764.[PubMed]
    [Google Scholar]
  17. Farina R. , Beneduzi A. , Ambrosini A. , de Campos S. B. , Lisboa B. B. , Wendisch V. , Vargas L. K. , Passaglia L. M. P. . ( 2012; ). Diversity of plant growth promoting rhizobacteria communities associated with the stages of canola growth. . Appl Soil Ecol 55:, 44–52. [CrossRef]
    [Google Scholar]
  18. Franco-Correa M. , Quintana A. , Duque C. , Suarez C. , Rodriguez M. X. , Barea J.-M. . ( 2010; ). Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. . Appl Soil Ecol 45:, 209–217. [CrossRef]
    [Google Scholar]
  19. Ghosh P. K. , Saha P. , Mayilraj S. , Maiti T. K. . ( 2013; ). Role of IAA metabolizing enzymes on production of IAA in root nodule of Cajanus cajan and its PGP Rhizobium sp. . Biocatal Agric Biotechnol 2:, 234–239.
    [Google Scholar]
  20. Gordon S. A. , Weber R. P. . ( 1951; ). Colorimetric estimation of indoleacetic acid. . Plant Physiol 26:, 192–195. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hamdali H. , Bouizgarne B. , Hafidi M. , Lebrihi A. , Virolle M. J. , Ouhdouch Y. . ( 2008; ). Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. . Appl Soil Ecol 38:, 12–19. [CrossRef]
    [Google Scholar]
  22. Hayakawa M. , Nonomura H. . ( 1987; ). Humic-acid vitamin agar, a new medium for the selective isolation of soil actinomycetes. . J Ferment Technol 65:, 501–509. [CrossRef]
    [Google Scholar]
  23. Hayakawa M. , Nonomura H. . ( 1989; ). A new method for the intensive isolation of actinomycete from soil. . Actinomycetologica 3:, 95–104. [CrossRef]
    [Google Scholar]
  24. Hayakawa M. , Sadaka T. , Kajiura T. , Nonomura H. . ( 1991; ). New methods for the highly selective isolation of Micromonospora and Microbispora. . J Ferment Technol 72:, 320–326. [CrossRef]
    [Google Scholar]
  25. Hayakawa M. , Momose Y. , Kajiura T. , Yamazaki T. , Tamura T. , Hatano K. , Nonomura H. . ( 1995; ). A selective isolation method for Actinomadura viridis in soil. . J Ferment Bioeng 79:, 287–289. [CrossRef]
    [Google Scholar]
  26. Heuer H. , Krsek M. , Baker P. , Smalla K. , Wellington E. M. H. . ( 1997; ). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. . Appl Environ Microbiol 63:, 3233–3241.[PubMed]
    [Google Scholar]
  27. Hiltner L. . ( 1904; ). Uber neuere erfahrungen und probleme auf dem gebiet der bodenbakteriologie und unter besonderer berucksichtigung der grundungung und brache. . Arb Dtsch Landwirtsch Ges 98:, 59–78.
    [Google Scholar]
  28. Hodgson D. A. . ( 2000; ). Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. . Adv Microb Physiol 42:, 47–238. [CrossRef] [PubMed]
    [Google Scholar]
  29. Hopwood D. A. , Bibb M. J. , Chater K. F. , Kieser T. , Bruton C. J. , Kieser H. M. . ( 1985; ). Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich:: John Innes Foundation;.
    [Google Scholar]
  30. Hsu S. C. , Lockwood J. L. . ( 1975; ). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. . Appl Microbiol 29:, 422–426.[PubMed]
    [Google Scholar]
  31. Ikeda H. , Ishikawa J. , Hanamoto A. , Shinose M. , Kikuchi H. , Shiba T. , Sakaki Y. , Hattori M. , Omura S. . ( 2003; ). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. . Nat Biotechnol 21:, 526–531. [CrossRef] [PubMed]
    [Google Scholar]
  32. Jog R. , Nareshkumar G. , Rajkumar S. . ( 2012; ). Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. . J Appl Microbiol 113:, 1154–1164. [CrossRef] [PubMed]
    [Google Scholar]
  33. Joseph S. , Jisha M. S. . ( 2009; ). Buffering reduces phosphate solubilizing ability of selected strains of bacteria. . World J Agric Sci 5:, 135–137.
    [Google Scholar]
  34. Kieser T. , Bibb M. J. , Buttner M. J. , Chater K. F. , Hopwood D. A. . ( 2000; ). Preparation and analysis of genomic and plasmid DNA. . In Practical Streptomyces, pp. 162–208. Edited by Kieser T. . . Norwich:: John Innes Foundation;.
    [Google Scholar]
  35. Lee E. J. , Hwang K. Y. , Lee H.-S. , Chung N. . ( 2011; ). Characterization of a new Streptomyces sp. A1022 as a potential biocontrol agent. . J Korean Soc Appl Biol Chem 54:, 488–493. [CrossRef]
    [Google Scholar]
  36. Lemos M. L. , Toranzo A. E. , Barja J. L. . ( 1985; ). Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. . Microb Ecol 11:, 149–163. [CrossRef] [PubMed]
    [Google Scholar]
  37. Livak K. J. , Schmittgen T. D. . ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔ C T method. . Methods 25:, 402–408. [CrossRef] [PubMed]
    [Google Scholar]
  38. Mehta P. , Chauhan A. , Mahajan R. , Mahajan P. K. , Shirkot C. K. . ( 2000; ). Strains of Bacillus circulans isolated from apple rhizosphere showing plant growth promoting potential. . Curr Sci 98:, 538–542.
    [Google Scholar]
  39. Meyer J. M. , Abdallah M. A. . ( 1978; ). The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. . J Gen Microbiol 107:, 319–328. [CrossRef]
    [Google Scholar]
  40. Miller G. L. . ( 1959; ). Use of dinitrosalicylic acid reagent for determination of reducing sugar. . Anal Chem 31:, 426–428. [CrossRef]
    [Google Scholar]
  41. Nimmo G. A. , Nimmo H. G. . ( 1984; ). The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase. . Eur J Biochem 141:, 409–414. [CrossRef] [PubMed]
    [Google Scholar]
  42. Omura S. , Ikeda H. , Ishikawa J. , Hanamoto A. , Takahashi C. , Shinose M. , Takahashi Y. , Horikawa H. , Nakazawa H. . & other authors ( 2001; ). Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. . Proc Natl Acad Sci U S A 98:, 12215–12220. [CrossRef] [PubMed]
    [Google Scholar]
  43. Otoguro M. , Hayakawa M. , Yamazaki T. , Iimura Y. . ( 2001; ). An integrated method for the enrichment and selective isolation of Actinokineospora spp. in soil and plant litter. . J Appl Microbiol 91:, 118–130. [CrossRef] [PubMed]
    [Google Scholar]
  44. Pandey A. , Naik M. M. , Dubey S. K. . ( 2010; ). Organic metabolites produced by Vibrio parahaemolyticus strain An3 isolated from Goan mullet inhibit bacterial fish pathogens. . Afr J Biotechnol 9:, 7134–7140.
    [Google Scholar]
  45. Quan C. , Zhang L. , Wang Y. , Ohta Y. . ( 2001; ). Production of phytase in a low phosphate medium by a novel yeast Candida krusei . . J Biosci Bioeng 92:, 154–160.[PubMed] [CrossRef]
    [Google Scholar]
  46. Quecine M. C. , Araujo W. L. , Marcon J. , Gai C. S. , Azevedo J. L. , Pizzirani-Kleiner A. A. . ( 2008; ). Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. . Lett Appl Microbiol 47:, 486–491. [CrossRef] [PubMed]
    [Google Scholar]
  47. Rajput M. S. , Naresh Kumar G. , Rajkumar S. . ( 2013; ). Repression of oxalic acid-mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate. . Arch Microbiol 195:, 81–88. [CrossRef] [PubMed]
    [Google Scholar]
  48. Richardson A. E. , Simpson R. J. . ( 2011; ). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. . Plant Physiol 156:, 989–996. [CrossRef] [PubMed]
    [Google Scholar]
  49. Rózycki H. , Strzelczyk E. . ( 1986; ). Organic acids production by Streptomyces spp. isolated from soil, rhizosphere and mycorrhizosphere of pine (Pinus sylvestris L.). . Plant Soil 96:, 337–345. [CrossRef]
    [Google Scholar]
  50. Schwyn B. , Neilands J. B. . ( 1987; ). Universal chemical assay for the detection and determination of siderophores. . Anal Biochem 160:, 47–56. [CrossRef] [PubMed]
    [Google Scholar]
  51. Shirling E. B. , Gottlieb D. . ( 1966; ). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  52. Silverstein R. M. . ( 1975; ). The determination of the molar extinction coefficient of reduced DTNB. . Anal Biochem 63:, 281–282. [CrossRef] [PubMed]
    [Google Scholar]
  53. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  54. Vessey J. K. . ( 2003; ). Plant growth promoting rhizobacteria as biofertilizers. . Plant Soil 255:, 571–586. [CrossRef]
    [Google Scholar]
  55. Wang C. , Wang Z. , Qiao X. , Li Z. , Li F. , Chen M. , Wang Y. , Huang Y. , Cui H. . ( 2013; ). Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. . FEMS Microbiol Lett 341:, 45–51. [CrossRef] [PubMed]
    [Google Scholar]
  56. Williams S. T. , Davies F. L. . ( 1965; ). Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. . J Gen Microbiol 38:, 251–261. [CrossRef] [PubMed]
    [Google Scholar]
  57. Yasmin F. , Othman R. , Sijam K. , Saad M. S. . ( 2009; ). Characterization of beneficial properties of plant growth-promoting rhizobacteria isolated from sweet potato rhizosphere. . Afr J Microbiol Res 3:, 815–821.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.074146-0
Loading
/content/journal/micro/10.1099/mic.0.074146-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error