1887

Abstract

Bacteria from the genus are a major component of microbial assemblages at Hanford Site (a largely decommissioned nuclear production complex) in eastern Washington state, USA, and have been shown to change significantly in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single-cell genomics techniques to shed light on the physiological niche of these micro-organisms. Analysis of four single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both -type and -type cytochrome oxidases. These SAGs encoded a wide range of both intra- and extracellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors, which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic micro-organisms in a carbon-limited aquifer, and hint at potential linkages between observed abundance shifts within the 300 Area (in the south-eastern corner of the site) subsurface and biogeochemical shifts associated with Columbia River water intrusion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.073965-0
2014-02-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/2/362.html?itemId=/content/journal/micro/10.1099/mic.0.073965-0&mimeType=html&fmt=ahah

References

  1. An D.-S., Kim S.-G., Ten L. N., Cho C.-H.. ( 2009;). Pedobacter daechungensis sp. nov., from freshwater lake sediment in South Korea. Int J Syst Evol Microbiol59:69–72 [CrossRef][PubMed]
    [Google Scholar]
  2. Anderson R. T., Vrionis H. A., Ortiz-Bernad I., Resch C. T., Long P. E., Dayvault R., Karp K., Marutzky S., Metzler D. R.. & other authors ( 2003;). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol69:5884–5891 [CrossRef][PubMed]
    [Google Scholar]
  3. Ayuso S. V., Lopez-Archilla A. I., Montes C., Guerrero M. C.. ( 2010;). Microbial activities in a coastal, sandy aquifer system (Donana Natural Protected Area, SW Spain). Geomicrobiol J27:409–423 [CrossRef]
    [Google Scholar]
  4. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M.. & other authors ( 2008;). The rast Server: rapid annotations using subsystems technology. BMC Genomics9:75 [CrossRef][PubMed]
    [Google Scholar]
  5. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S.. & other authors ( 2012;). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  6. Bjornstad B., Horner J., Vermeul V., Lanigan D., Thorne P.. ( 2009;). Borehole completion and conceptual hydrogeologic model for the IFRC Well Field, 300 Area, Hanford Site. Richland, WA: Pacific Northwest National Laboratory; [CrossRef]
  7. Blanvillain S., Meyer D., Boulanger A., Lautier M., Guynet C., Denancé N., Vasse J., Lauber E., Arlat M.. ( 2007;). Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS ONE2:e224 [CrossRef][PubMed]
    [Google Scholar]
  8. Bordoli L., Kiefer F., Arnold K., Benkert P., Battey J., Schwede T.. ( 2009;). Protein structure homology modeling using swiss-model workspace. Nat Protoc4:1–13 [CrossRef][PubMed]
    [Google Scholar]
  9. Buschmann S., Warkentin E., Xie H., Langer J. D., Ermler U., Michel H.. ( 2010;). The structure of cbb3 cytochrome oxidase provides insights into proton pumping. Science329:327–330 [CrossRef][PubMed]
    [Google Scholar]
  10. Casamayor E. O., Schäfer H., Bañeras L., Pedrós-Alió C., Muyzer G.. ( 2000;). Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol66:499–508 [CrossRef][PubMed]
    [Google Scholar]
  11. Chimento D. P., Kadner R. J., Wiener M. C.. ( 2005;). Comparative structural analysis of TonB-dependent outer membrane transporters: implications for the transport cycle. Proteins59:240–251 [CrossRef][PubMed]
    [Google Scholar]
  12. Curtis D. S., Phillips A. R., Callister S. J., Conlan S., McCue L. A.. ( 2013;). spocs: software for predicting and visualizing orthology/paralogy relationships among genomes. Bioinformatics29:2641–2642 [CrossRef][PubMed]
    [Google Scholar]
  13. Dean F. B., Hosono S., Fang L. H., Wu X. H., Faruqi A. F., Bray-Ward P., Sun Z. Y., Zong Q. L., Du Y. F.. & other authors ( 2002;). Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A99:5261–5266 [CrossRef][PubMed]
    [Google Scholar]
  14. Di Rienzi S. C., Sharon I., Wrighton K. C., Koren O., Hug L. A., Thomas B. C., Goodrich J. K., Bell J. T., Spector T. D.. & other authors ( 2013;). The human gut and subsurface harbor non-photosynthetic Cyanobacteria. eLife2:e01102 [CrossRef][PubMed]
    [Google Scholar]
  15. Ducluzeau A.-L., Ouchane S., Nitschke W.. ( 2008;). The cbb3 oxidases are an ancient innovation of the domain bacteria. Mol Biol Evol25:1158–1166 [CrossRef][PubMed]
    [Google Scholar]
  16. Freilich S., Kreimer A., Meilijson I., Gophna U., Sharan R., Ruppin E.. ( 2010;). The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res38:3857–3868 [CrossRef][PubMed]
    [Google Scholar]
  17. Fu H. A., Iuchi S., Lin E. C. C.. ( 1991;). The requirement of ArcA and Fnr for peak expression of the cyd operon in Escherichia coli under microaerobic conditions. Mol Gen Genet226:209–213 [CrossRef][PubMed]
    [Google Scholar]
  18. Ginige M. P., Kaksonen A. H., Morris C., Shackelton M., Patterson B. M.. ( 2013;). Bacterial community and groundwater quality changes in an anaerobic aquifer during groundwater recharge with aerobic recycled water. FEMS Microbiol Ecol85:553–567 [CrossRef][PubMed]
    [Google Scholar]
  19. Gordon N. S., Valenzuela A., Adams S. M., Ramsey P. W., Pollock J. L., Holben W. E., Gannon J. E.. ( 2009;). Pedobacter nyackensis sp. nov., Pedobacter alluvionis sp. nov. and Pedobacter borealis sp. nov., isolated from Montana flood-plain sediment and forest soil. Int J Syst Evol Microbiol59:1720–1726 [CrossRef][PubMed]
    [Google Scholar]
  20. Grissa I., Vergnaud G., Pourcel C.. ( 2007;). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res35:Web Server issueW52–W57[PubMed][CrossRef]
    [Google Scholar]
  21. Hemme C. L., Deng Y., Gentry T. J., Fields M. W., Wu L., Barua S., Barry K., Tringe S. G., Watson D. B.. & other authors ( 2010;). Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J4:660–672 [CrossRef][PubMed]
    [Google Scholar]
  22. Hoang V.-A., Kim Y.-J., Nguyen N. L., Min J.-W., Yang D.-C.. ( 2013;). Pedobacter ginsengiterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol63:1273–1279 [CrossRef][PubMed]
    [Google Scholar]
  23. Islam F. S., Gault A. G., Boothman C., Polya D. A., Charnock J. M., Chatterjee D., Lloyd J. R.. ( 2004;). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature430:68–71 [CrossRef][PubMed]
    [Google Scholar]
  24. Jeon Y., Kim J. M., Park J. H., Lee S. H., Seong C.-N., Lee S.-S., Jeon C. O.. ( 2009;). Pedobacter oryzae sp. nov., isolated from rice paddy soil. Int J Syst Evol Microbiol59:2491–2495 [CrossRef][PubMed]
    [Google Scholar]
  25. Jung Y.-T., Lee S.-Y., Choi W.-C., Oh T.-K., Yoon J.-H.. ( 2012;). Pedobacter boryungensis sp. nov., isolated from soil. Int J Syst Evol Microbiol62:13–17 [CrossRef][PubMed]
    [Google Scholar]
  26. Kolker E., Picone A. F., Galperin M. Y., Romine M. F., Higdon R., Makarova K. S., Kolker N., Anderson G. A., Qiu X.. & other authors ( 2005;). Global profiling of Shewanella oneidensis MR-1: expression of hypothetical genes and improved functional annotations. Proc Natl Acad Sci U S A102:2099–2104 [CrossRef][PubMed]
    [Google Scholar]
  27. Kwon S.-W., Son J.-A., Kim S.-J., Kim Y.-S., Park I.-C., Bok J.-I., Weon H.-Y.. ( 2011;). Pedobacter rhizosphaerae sp. nov. and Pedobacter soli sp. nov., isolated from rhizosphere soil of Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol61:2874–2879 [CrossRef][PubMed]
    [Google Scholar]
  28. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics115–175 Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  29. Lin X., Kennedy D., Peacock A., McKinley J., Resch C. T., Fredrickson J., Konopka A.. ( 2012a;). Distribution of microbial biomass and potential for anaerobic respiration in Hanford Site 300 Area subsurface sediment. Appl Environ Microbiol78:759–767 [CrossRef][PubMed]
    [Google Scholar]
  30. Lin X., McKinley J., Resch C. T., Kaluzny R., Lauber C. L., Fredrickson J., Knight R., Konopka A.. ( 2012b;). Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer. ISME J6:1665–1676 [CrossRef][PubMed]
    [Google Scholar]
  31. Luo X., Wang Z., Dai J., Zhang L., Li J., Tang Y., Wang Y., Fang C.. ( 2010;). Pedobacter glucosidilyticus sp. nov., isolated from dry riverbed soil. Int J Syst Evol Microbiol60:229–233 [CrossRef][PubMed]
    [Google Scholar]
  32. Makarova K. S., Haft D. H., Barrangou R., Brouns S. J. J., Charpentier E., Horvath P., Moineau S., Mojica F. J. M., Wolf Y. I.. & other authors ( 2011;). Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol9:467–477 [CrossRef][PubMed]
    [Google Scholar]
  33. Margesin R., Zhang D.-C.. ( 2013;). Pedobacter ruber sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol63:339–344 [CrossRef][PubMed]
    [Google Scholar]
  34. Margesin R., Spröer C., Schumann P., Schinner F.. ( 2003;). Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol53:1291–1296 [CrossRef][PubMed]
    [Google Scholar]
  35. Maymó-Gatell X., Chien Y., Gossett J. M., Zinder S. H.. ( 1997;). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science276:1568–1571 [CrossRef][PubMed]
    [Google Scholar]
  36. Morris R. L., Schmidt T. M.. ( 2013;). Shallow breathing: bacterial life at low O2. . Nat Rev Microbiol11:205–212 [CrossRef][PubMed]
    [Google Scholar]
  37. Muurholm S., Cousin S., Päuker O., Brambilla E., Stackebrandt E.. ( 2007;). Pedobacter duraquae sp. nov., Pedobacter westerhofensis sp. nov., Pedobacter metabolipauper sp. nov., Pedobacter hartonius sp. nov. and Pedobacter steynii sp. nov., isolated from a hard-water rivulet. Int J Syst Evol Microbiol57:2221–2227 [CrossRef][PubMed]
    [Google Scholar]
  38. Neugebauer H., Herrmann C., Kammer W., Schwarz G., Nordheim A., Braun V.. ( 2005;). ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus . J Bacteriol187:8300–8311 [CrossRef][PubMed]
    [Google Scholar]
  39. Nguyen H. D., Cao B., Mishra B., Boyanov M. I., Kemner K. M., Fredrickson J. K., Beyenal H.. ( 2012;). Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium. Water Res46:227–234 [CrossRef][PubMed]
    [Google Scholar]
  40. Oh H.-W., Kim B.-C., Park D.-S., Jeong W.-J., Kim H., Lee K. H., Kim S. U.. ( 2013;). Pedobacter luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol63:1304–1310 [CrossRef][PubMed]
    [Google Scholar]
  41. Patel R. K., Jain M.. ( 2012;). NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE7:e30619 [CrossRef][PubMed]
    [Google Scholar]
  42. Pereira M. M., Refojo P. N., Hreggvidsson G. O., Hjorleifsdottir S., Teixeira M.. ( 2007;). The alternative complex III from Rhodothermus marinus – a prototype of a new family of quinol:electron acceptor oxidoreductases. FEBS Lett581:4831–4835 [CrossRef][PubMed]
    [Google Scholar]
  43. Peretyazhko T. S., Zachara J. M., Kukkadapu R. K., Heald S. M., Kutnyakov I. V., Resch C. T., Arey B. W., Wang C. M., Kovarik L.. & other authors ( 2012;). Pertechnetate (TcO4 ) reduction by reactive ferrous iron forms in naturally anoxic, redox transition zone sediments from the Hanford Site, USA. Geochim Cosmochim Acta92:48–66 [CrossRef]
    [Google Scholar]
  44. Pinhassi J., Zweifel U. L., Hagström A.. ( 1997;). Dominant marine bacterioplankton species found among colony-forming bacteria. Appl Environ Microbiol63:3359–3366[PubMed]
    [Google Scholar]
  45. Postle K., Kadner R. J.. ( 2003;). Touch and go: tying TonB to transport. Mol Microbiol49:869–882 [CrossRef][PubMed]
    [Google Scholar]
  46. Preisig O., Zufferey R., Thöny-Meyer L., Appleby C. A., Hennecke H.. ( 1996;). A high-affinity cbb3 -type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum . J Bacteriol178:1532–1538[PubMed]
    [Google Scholar]
  47. Punta M., Coggill P. C., Eberhardt R. Y., Mistry J., Tate J., Boursnell C., Pang N., Forslund K., Ceric G.. & other authors ( 2012;). The Pfam protein families database. Nucleic Acids Res40:Database issueD290–D301 [CrossRef][PubMed]
    [Google Scholar]
  48. Puustinen A., Finel M., Haltia T., Gennis R. B., Wikström M.. ( 1991;). Properties of the two terminal oxidases of Escherichia coli . Biochemistry30:3936–3942 [CrossRef][PubMed]
    [Google Scholar]
  49. Raes J., Korbel J. O., Lercher M. J., von Mering C., Bork P.. ( 2007;). Prediction of effective genome size in metagenomic samples. Genome Biol8:R10 [CrossRef][PubMed]
    [Google Scholar]
  50. Raghunathan A., Ferguson H. R. Jr, Bornarth C. J., Song W. M., Driscoll M., Lasken R. S.. ( 2005;). Genomic DNA amplification from a single bacterium. Appl Environ Microbiol71:3342–3347 [CrossRef][PubMed]
    [Google Scholar]
  51. Refojo P. N., Teixeira M., Pereira M. M.. ( 2010;). The alternative complex III of Rhodothermus marinus and its structural and functional association with caa3 oxygen reductase. Biochim Biophys Acta1797:1477–1482 [CrossRef][PubMed]
    [Google Scholar]
  52. Rice C. W., Hempfling W. P.. ( 1978;). Oxygen-limited continuous culture and respiratory energy conservation in Escherichia coli . J Bacteriol134:115–124[PubMed]
    [Google Scholar]
  53. Roh S. W., Quan Z.-X., Nam Y.-D., Chang H.-W., Kim K.-H., Kim M.-K., Im W.-T., Jin L., Kim S.-H.. & other authors ( 2008;). Pedobacter agri sp. nov., from soil. Int J Syst Evol Microbiol58:1640–1643 [CrossRef][PubMed]
    [Google Scholar]
  54. Schwede T., Kopp J., Guex N., Peitsch M. C.. ( 2003;). swiss-model: an automated protein homology-modeling server. Nucleic Acids Res31:3381–3385 [CrossRef][PubMed]
    [Google Scholar]
  55. Shulami S., Zaide G., Zolotnitsky G., Langut Y., Feld G., Sonenshein A. L., Shoham Y.. ( 2007;). A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus . Appl Environ Microbiol73:874–884 [CrossRef][PubMed]
    [Google Scholar]
  56. Sieracki M., Poulton N., Crosbie N.. ( 2005;). Automated isolation techniques for microalgae. Chapter 7, 101-116. Algal Culturing Techniques Anderson R.. New York: Elsevier Academic;
    [Google Scholar]
  57. Stepanauskas R.. ( 2012;). Single cell genomics: an individual look at microbes. Curr Opin Microbiol15:613–620 [CrossRef][PubMed]
    [Google Scholar]
  58. Stepanauskas R., Sieracki M. E.. ( 2007;). Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci U S A104:9052–9057 [CrossRef][PubMed]
    [Google Scholar]
  59. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J.. ( 1998;). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol48:165–177 [CrossRef][PubMed]
    [Google Scholar]
  60. Swan B. K., Martinez-Garcia M., Preston C. M., Sczyrba A., Woyke T., Lamy D., Reinthaler T., Poulton N. J., Masland E. D. P.. & other authors ( 2011;). Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science333:1296–1300 [CrossRef][PubMed]
    [Google Scholar]
  61. Um W., Zachara J. M., Liu C., Moore D. A., Rod K. A.. ( 2010;). Resupply mechanism to a contaminated aquifer: a laboratory study of U(VI) desorption from capillary fringe sediments. Geochim Cosmochim Acta74:5155–5170 [CrossRef]
    [Google Scholar]
  62. Wilkins M. J., Wrighton K. C., Nicora C. D., Williams K. H., McCue L. A., Handley K. M., Miller C. S., Giloteaux L., Montgomery A. P.. & other authors ( 2013;). Fluctuations in species-level protein expression occur during element and nutrient cycling in the subsurface. PLoS ONE8:e57819 [CrossRef][PubMed]
    [Google Scholar]
  63. Williams K. H., Long P. E., Davis J. A., Wilkins M. J., N’Guessan A. L., Steefel C. I., Yang L., Newcomer D. R., Spane F. A.. & other authors ( 2011;). Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater. Geomicrobiol J28:519–539 [CrossRef]
    [Google Scholar]
  64. Woyke T., Xie G., Copeland A., González J. M., Han C., Kiss H., Saw J. H., Senin P., Yang C.. & other authors ( 2009;). Assembling the marine metagenome, one cell at a time. PLoS ONE4:e5299 [CrossRef][PubMed]
    [Google Scholar]
  65. Woyke T., Sczyrba A., Lee J., Rinke C., Tighe D., Clingenpeel S., Malmstrom R., Stepanauskas R., Cheng J.-F.. ( 2011;). Decontamination of MDA reagents for single cell whole genome amplification. PLoS ONE6:e26161 [CrossRef][PubMed]
    [Google Scholar]
  66. Wrighton K. C., Thomas B. C., Sharon I., Miller C. S., Castelle C. J., VerBerkmoes N. C., Wilkins M. J., Hettich R. L., Lipton M. S.. & other authors ( 2012;). Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science337:1661–1665 [CrossRef][PubMed]
    [Google Scholar]
  67. Yu N. Y., Wagner J. R., Laird M. R., Melli G., Rey S., Lo R., Dao P., Sahinalp S. C., Ester M.. & other authors ( 2010;). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics26:1608–1615 [CrossRef][PubMed]
    [Google Scholar]
  68. Zachara J. M., Long P. E., Bargar J., Davis J. A., Fox P., Fredrickson J. K., Freshley M. D., Konopka A. E., Liu C.. & other authors ( 2013;). Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater–river interaction zone. J Contam Hydrol147:45–72 [CrossRef][PubMed]
    [Google Scholar]
  69. Zhang K., Martiny A. C., Reppas N. B., Barry K. W., Malek J., Chisholm S. W., Church G. M.. ( 2006;). Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol24:680–686 [CrossRef][PubMed]
    [Google Scholar]
  70. Zhang D.-C., Schinner F., Margesin R.. ( 2010;). Pedobacter bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol60:2592–2595 [CrossRef][PubMed]
    [Google Scholar]
  71. Zhou Y., Kellermann C., Griebler C.. ( 2012a;). Spatio-temporal patterns of microbial communities in a hydrologically dynamic pristine aquifer. FEMS Microbiol Ecol81:230–242 [CrossRef][PubMed]
    [Google Scholar]
  72. Zhou Z., Jiang F., Wang S., Peng F., Dai J., Li W., Fang C.. ( 2012b;). Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter glucosidilyticus and Pedobacter lentus . Int J Syst Evol Microbiol62:1963–1969 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.073965-0
Loading
/content/journal/micro/10.1099/mic.0.073965-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error