1887

Abstract

Leaf-cutting ants (genera and ) cultivate a specialized fungus for food in underground chambers employing cut plant material as substrate. Parasitism occurs in this agricultural system and plays an important role in colony fitness. The microfungi , a specialized mycoparasite of the fungal cultivar, is highly prevalent among colonies. In this study, we tested the antagonistic activity of several strains from different geographical areas in Costa Rica. We employed a combination of laboratory tests to evaluate virulence, including pure culture challenges, toxicity to fungus garden pieces and subcolony bioassays. We also performed a phylogenetic analysis of these strains in order to correlate their virulence with the genetic structure of this population. The bioassays yielded results consistent between each other and showed significant differences in antagonistic activity among the parasites evaluated. However, no significant differences were found when comparing the results of the bioassays according to the source of the ants’ fungal cultivar. The phylogenetic analyses were consistent with these results: whilst the fungal cultivar phylogeny showed a single clade with limited molecular variation, the phylogeny yielded several clades with the most virulent isolates grouping in the same well-supported clade. These results indicate that there are strains better suited to establish their antagonistic effect, whilst the genetic homogeneity of the fungal cultivars limits their ability to modulate antagonism. These findings should be taken into consideration when evaluating the potential of isolates as biocontrol agents for this important agricultural pest in the Neotropics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.073593-0
2014-08-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1727.html?itemId=/content/journal/micro/10.1099/mic.0.073593-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J..( 1990;). Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Bender W., Spierer P., Hogness D. S., Chambon P..( 1983;). Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol168:17–33 [CrossRef][PubMed]
    [Google Scholar]
  3. Chapela I. H., Rehner S. A., Schultz T. R., Mueller U. G..( 1994;). Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science266:1691–1694 [CrossRef][PubMed]
    [Google Scholar]
  4. Cherrett J. M..( 1968;). Some aspects of the distribution of pest species of leaf cutting ants in the Caribbean. J Am Soc Hortic Sci12:295–310
    [Google Scholar]
  5. Cherrett J. M..( 1986;). The biology, pest status and control of leaf cutting ants. Agric Zool Rev1:1–27
    [Google Scholar]
  6. Currie C. R..( 2001a;). A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol55:357–380 [CrossRef][PubMed]
    [Google Scholar]
  7. Currie C. R..( 2001b;). Prevalence and impact of a virulent parasite on a tripartite mutualism. Oecologia128:99–106 [CrossRef]
    [Google Scholar]
  8. Currie C. R., Stuart A. E..( 2001;). Weeding and grooming of pathogens in agriculture by ants. Proc Biol Sci268:1033–1039 [CrossRef][PubMed]
    [Google Scholar]
  9. Currie C. R., Mueller U. G., Malloch D..( 1999a;). The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci U S A96:7998–8002 [CrossRef][PubMed]
    [Google Scholar]
  10. Currie C. R., Scott J. A., Summerbell R. C., Malloch D..( 1999b;). Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature398:701–704 [CrossRef]
    [Google Scholar]
  11. Currie C. R., Wong B., Stuart A. E., Schultz T. R., Rehner S. A., Mueller U. G., Sung G. H., Spatafora J. W., Straus N. A..( 2003;). Ancient tripartite coevolution in the attine ant–microbe symbiosis. Science299:386–388 [CrossRef][PubMed]
    [Google Scholar]
  12. Gerardo N. M., Mueller U. G., Price S. L., Currie C. R..( 2004;). Exploiting a mutualism: parasite specialization on cultivars within the fungus-growing ant symbiosis. Proc Biol Sci271:1791–1798 [CrossRef][PubMed]
    [Google Scholar]
  13. Gerardo N. M., Jacobs S. R., Currie C. R., Mueller U. G..( 2006a;). Ancient host–pathogen associations maintained by specificity of chemotaxis and antibiosis. PLoS Biol4:e235 [CrossRef][PubMed]
    [Google Scholar]
  14. Gerardo N. M., Mueller U. G., Currie C. R..( 2006b;). Complex host–pathogen coevolution in the Apterostigma fungus-growing ant–microbe symbiosis. BMC Evol Biol6:88–96 [CrossRef][PubMed]
    [Google Scholar]
  15. Höldobler B., Wilson E. O..( 1990;). The Ants Cambridge, MA: Harvard University Press; [CrossRef]
    [Google Scholar]
  16. Lively C. M..( 1999;). Migration, virulence, and the geographic mosaic of adaptations by parasites. Am Nat153:S5S34–S47 [CrossRef]
    [Google Scholar]
  17. Longino J. T..( 2004;). Ants of Costa Rica. The Evergreen State College; Olympia, WA, USA:http://academic.evergreen.edu/projects/ants/genusguide/attini.html
  18. Möller A. F..( 1893;). Die Pilzgärten einiger südamerikanischer Ameisen. Jena: Gustav Fischer (in German);
  19. Mueller U. G., Rehner S. A., Schultz T. R..( 1998;). The evolution of agriculture in ants. Science281:2034–2038 [CrossRef][PubMed]
    [Google Scholar]
  20. Penn O., Privman E., Ashkenazy H., Landan G., Graur D., Pupko T..( 2010;). guidance: a web server for assessing alignment confidence scores. Nucleic Acids Res38:Suppl.W23–W28 [CrossRef][PubMed]
    [Google Scholar]
  21. Pinto-Tomás A. A., Anderson M. A., Suen G., Stevenson D. M., Chu F. S., Cleland W. W., Weimer P. J., Currie C. R..( 2009;). Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science326:1120–1123 [CrossRef][PubMed]
    [Google Scholar]
  22. Posada D..( 2008;). jModelTest: phylogenetic model averaging. Mol Biol Evol25:1253–1256 [CrossRef][PubMed]
    [Google Scholar]
  23. Poulsen M., Fernández-Marín H., Currie C. R., Boomsma J. J..( 2009;). Ephemeral windows of opportunity for horizontal transmission of fungal symbionts in leaf-cutting ants. Evolution63:2235–2247 [CrossRef][PubMed]
    [Google Scholar]
  24. Reynolds H. T., Currie C. R..( 2004;). Pathogenicity of Escovopsis weberi: the parasite of the attine ant–microbe symbiosis directly consumes the ant-cultivated fungus. Mycologia96:955–959 [CrossRef][PubMed]
    [Google Scholar]
  25. Ronquist F., Huelsenbeck J. P..( 2003;). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics19:1572–1574 [CrossRef][PubMed]
    [Google Scholar]
  26. Schultz T. R., Brady S. G..( 2008;). Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci U S A105:5435–5440 [CrossRef][PubMed]
    [Google Scholar]
  27. Silva A., Rodrigues A., Bacci M. Jr, Pagnocca F. C., Bueno O. C..( 2006;). Susceptibility of the ant-cultivated fungus Leucoagaricus gongylophorus (Agaricales: Basidiomycota) towards microfungi. Mycopathologia162:115–119 [CrossRef][PubMed]
    [Google Scholar]
  28. Stahel G..( 1943;). The fungus gardens of the leaf-cutting ants. J New York Bot Gard44:245–253
    [Google Scholar]
  29. Suen G., Scott J. J., Aylward F. O., Adams S. M., Tringe S. G., Pinto-Tomás A. A., Foster C. E., Pauly M., Weimer P. J..& other authors ( 2010;). An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet6:e1001129 [CrossRef][PubMed]
    [Google Scholar]
  30. Taerum S. J., Cafaro M. J., Little A. E., Schultz T. R., Currie C. R..( 2007;). Low host–pathogen specificity in the leaf-cutting ant–microbe symbiosis. Proc Biol Sci274:1971–1978 [CrossRef][PubMed]
    [Google Scholar]
  31. Taerum S. J., Cafaro M. J., Currie C. R..( 2010;). Presence of multiparasite infections within individual colonies of leaf-cutter ants. Environ Entomol39:105–113 [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  33. Urbas P., Araújo M. V., Leal I. R., Wirth R..( 2007;). Cutting more from cut forests: edge effects on foraging and herbivory of leaf-cutting ants in Brazil. Biotropica39:489–495 [CrossRef]
    [Google Scholar]
  34. Varon E. H..( 2006;). Distribution and foraging by the leaf-cutting ant, Atta cephalotes L., in coffee plantations with different types of management and landscape contexts, and alternatives to insecticides for its control Dissertation: Centro Agronómico Tropical de Investigación y Enseñanza, Costa Rica;
    [Google Scholar]
  35. Weber N. A..( 1966;). Fungus-growing ants. Science153:587–604 [CrossRef][PubMed]
    [Google Scholar]
  36. Weber N. A..( 1972;). Gardening Ants: the Attines Philadelphia, PA: American Philosophical Society;
    [Google Scholar]
  37. Weber N. A..( 1979;). Fungus culturing by ants. Insect–Fungus Symbiosis, Mutualism and Commensalisms77–116 Batra L. R.. New York, NY: John Wiley;
    [Google Scholar]
  38. Wilson E. O..( 1971;). The Insect Societies Cambridge, MA: The Belknap Press of Harvard University Press;
    [Google Scholar]
  39. Wilson E. O..( 1980;). Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behav Ecol Sociobiol7:143–156 [CrossRef]
    [Google Scholar]
  40. Wirth R., Beyschlag W., Ryel R., Herz H., Hölldobler B..( 2003;). The herbivory of leaf-cutting ants. A case study on Atta colombica in the tropical rainforest of Panama. Ecol Studies42:113–116
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.073593-0
Loading
/content/journal/micro/10.1099/mic.0.073593-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error