1887

Abstract

, a symbiotic inhabitant of the gastrointestinal tract in humans and animals, is marketed as a probiotic. The ability to adhere to intestinal epithelial cells and mucus is an interesting property with regard to probiotic features such as colonization of the gastrointestinal tract and interaction with the host. Here, we present a study performed to elucidate the role of sortase (SrtA), four putative sortase-dependent proteins (SDPs), and one C-terminal membrane-anchored cell surface protein of ATCC PTA 6475 in adhesion to Caco-2 cells and mucus . This included mutagenesis of the genes encoding these proteins and complementation of mutants. A null mutation in encoding resulted in significantly reduced adhesion to Caco-2 cells and mucus, indicating involvement of SDPs in adhesion. Evaluation of the bacterial adhesion revealed that of the five putative surface protein mutants tested, only a null mutation in the gene, encoding a putative SDP with an LPxTG motif, resulted in a significant loss of adhesion to both Caco-2 cells and mucus. Complementation with the functional gene on a plasmid restored adhesion to Caco-2 cells. However, complete restoration of adhesion to mucus was not achieved. Overexpression of in strain ATCC PTA 6475 resulted in an increased adhesion to Caco-2 cells and mucus compared with the WT strain. We conclude from these results that, among the putative surface proteins tested, the protein encoded by plays a critical role in binding of ATCC PTA 6475 to Caco-2 cells and mucus. Based on this, we propose that this LPxTG motif containing protein should be referred to as cell and mucus binding protein A (CmbA).

Funding
This study was supported by the:
  • Fund for the Research Levy on Agricultural Products (Norway)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.073551-0
2014-04-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/671.html?itemId=/content/journal/micro/10.1099/mic.0.073551-0&mimeType=html&fmt=ahah

References

  1. Agustina R., Kok F. J., van de Rest O., Fahmida U., Firmansyah A., Lukito W., Feskens E. J., van den Heuvel E. G., Albers R., Bovee-Oudenhoven I. M. ( 2012). Randomized trial of probiotics and calcium on diarrhea and respiratory tract infections in Indonesian children. Pediatrics 129:e1155–e1164 [View Article][PubMed]
    [Google Scholar]
  2. Ahrné S., Molin G., Axelsson L. ( 1992). Transformation of Lactobacillus reuteri with electroporation: studies on the erythromycin resistance plasmid pLUL631. Curr Microbiol 24:199–205 [View Article]
    [Google Scholar]
  3. Aleljung P., Shen W., Rozalska B., Hellman U., Ljungh A., Wadström T. ( 1994). Purification of collagen-binding proteins of Lactobacillus reuteri NCIB 11951. Curr Microbiol 28:231–236 [View Article][PubMed]
    [Google Scholar]
  4. Bae T., Schneewind O. ( 2003). The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing. J Bacteriol 185:2910–2919 [View Article][PubMed]
    [Google Scholar]
  5. Bergonzelli G. E., Granato D., Pridmore R. D., Marvin-Guy L. F., Donnicola D., Corthésy-Theulaz I. E. ( 2006). GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 74:425–434 [View Article][PubMed]
    [Google Scholar]
  6. Bierne H., Mazmanian S. K., Trost M., Pucciarelli M. G., Liu G., Dehoux P., Jänsch L., Garcia-del Portillo F., Schneewind O., Cossart P. ( 2002). Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol Microbiol 43:869–881 [View Article][PubMed]
    [Google Scholar]
  7. Boekhorst J., Helmer Q., Kleerebezem M., Siezen R. J. ( 2006). Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology 152:273–280 [View Article][PubMed]
    [Google Scholar]
  8. Buck B. L., Altermann E., Svingerud T., Klaenhammer T. R. ( 2005). Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:8344–8351 [View Article][PubMed]
    [Google Scholar]
  9. Buck B. L., Azcarate-Peril M. A., Klaenhammer T. R. ( 2009). Role of autoinducer-2 on the adhesion ability of Lactobacillus acidophilus. J Appl Microbiol 107:269–279 [View Article][PubMed]
    [Google Scholar]
  10. Call E. K., Klaenhammer T. R. ( 2013). Relevance and application of sortase and sortase-dependent proteins in lactic acid bacteria. Front Microbiol 4:73 [View Article][PubMed]
    [Google Scholar]
  11. Casas I. A., Dobrogosz W. J. ( 2000). Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb Ecol Health Dis 12:247–285 [View Article]
    [Google Scholar]
  12. DeDent A., Bae T., Missiakas D. M., Schneewind O. ( 2008). Signal peptides direct surface proteins to two distinct envelope locations of Staphylococcus aureus. EMBO J 27:2656–2668 [View Article][PubMed]
    [Google Scholar]
  13. Eaton K. A., Honkala A., Auchtung T. A., Britton R. A. ( 2011). Probiotic Lactobacillus reuteri ameliorates disease due to enterohemorrhagic Escherichia coli in germfree mice. Infect Immun 79:185–191 [View Article][PubMed]
    [Google Scholar]
  14. Edelman S. M., Lehti T. A., Kainulainen V., Antikainen J., Kylväjä R., Baumann M., Westerlund-Wikström B., Korhonen T. K. ( 2012). Identification of a high-molecular-mass Lactobacillus epithelium adhesin (LEA) of Lactobacillus crispatus ST1 that binds to stratified squamous epithelium. Microbiology 158:1713–1722 [View Article][PubMed]
    [Google Scholar]
  15. Frese S. A., Benson A. K., Tannock G. W., Loach D. M., Kim J., Zhang M., Oh P. L., Heng N. C., Patil P. B. & other authors ( 2011). The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 7:e1001314 [View Article][PubMed]
    [Google Scholar]
  16. Gasson M. J. ( 1983). Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9[PubMed]
    [Google Scholar]
  17. Granato D., Bergonzelli G. E., Pridmore R. D., Marvin L., Rouvet M., Corthésy-Theulaz I. E. ( 2004). Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72:2160–2169 [View Article][PubMed]
    [Google Scholar]
  18. Gross G., Snel J., Boekhorst J., Smits M. A., Kleerebezem M. ( 2010). Biodiversity of mannose-specific adhesion in Lactobacillus plantarum revisited: strain-specific domain composition of the mannose-adhesin. Benef Microbes 1:61–66 [View Article][PubMed]
    [Google Scholar]
  19. Holo H., Nes I. F. ( 1989). High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123[PubMed]
    [Google Scholar]
  20. Horton R. M., Pease L. R. ( 1991). Recombination and mutagenesis of DNA sequences using PCR. Directed Mutagenesis: A Practical Approach217–247 McPherson M. J. Oxford: IRL Press;
    [Google Scholar]
  21. Hunter C., Dimaguila M. A., Gal P., Wimmer J. E. Jr, Ransom J. L., Carlos R. Q., Smith M., Davanzo C. C. ( 2012). Effect of routine probiotic, Lactobacillus reuteri DSM 17938, use on rates of necrotizing enterocolitis in neonates with birthweight < 1000 grams: a sequential analysis. BMC Pediatr 12:142 [View Article][PubMed]
    [Google Scholar]
  22. Jensen H., Grimmer S., Naterstad K., Axelsson L. ( 2012). In vitro testing of commercial and potential probiotic lactic acid bacteria. Int J Food Microbiol 153:216–222 [View Article][PubMed]
    [Google Scholar]
  23. Jones S. E., Whitehead K., Saulnier D., Thomas C. M., Versalovic J., Britton R. A. ( 2011). Cyclopropane fatty acid synthase mutants of probiotic human-derived Lactobacillus reuteri are defective in TNF inhibition. Gut Microbes 2:69–79 [View Article][PubMed]
    [Google Scholar]
  24. Juge N. ( 2012). Microbial adhesins to gastrointestinal mucus. Trends Microbiol 20:30–39 [View Article][PubMed]
    [Google Scholar]
  25. Kankainen M., Paulin L., Tynkkynen S., von Ossowski I., Reunanen J., Partanen P., Satokari R., Vesterlund S., Hendrickx A. P. A. & other authors ( 2009). Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci U S A 106:17193–17198 [View Article][PubMed]
    [Google Scholar]
  26. Kleerebezem M., Hols P., Bernard E., Rolain T., Zhou M., Siezen R. J., Bron P. A. ( 2010). The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34:199–230 [View Article][PubMed]
    [Google Scholar]
  27. Kullen M. J., Sanozky-Dawes R. B., Crowell D. C., Klaenhammer T. R. ( 2000). Use of the DNA sequence of variable regions of the 16S rRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J Appl Microbiol 89:511–516 [View Article][PubMed]
    [Google Scholar]
  28. Lebeer S., Vanderleyden J., De Keersmaecker S. C. ( 2008). Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764 [View Article][PubMed]
    [Google Scholar]
  29. Lin Y. P., Thibodeaux C. H., Peña J. A., Ferry G. D., Versalovic J. ( 2008). Probiotic Lactobacillus reuteri suppress proinflammatory cytokines via c-Jun. Inflamm Bowel Dis 14:1068–1083 [View Article][PubMed]
    [Google Scholar]
  30. MacKenzie D. A., Tailford L. E., Hemmings A. M., Juge N. ( 2009). Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. J Biol Chem 284:32444–32453 [View Article][PubMed]
    [Google Scholar]
  31. MacKenzie D. A., Jeffers F., Parker M. L., Vibert-Vallet A., Bongaerts R. J., Roos S., Walter J., Juge N. ( 2010). Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiology 156:3368–3378 [View Article][PubMed]
    [Google Scholar]
  32. Marraffini L. A., Dedent A. C., Schneewind O. ( 2006). Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev 70:192–221 [View Article][PubMed]
    [Google Scholar]
  33. McCabe L. R., Irwin R., Schaefer L., Britton R. A. ( 2013). Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol 228:1793–1798 [View Article][PubMed]
    [Google Scholar]
  34. Miyoshi Y., Okada S., Uchimura T., Satoh E. ( 2006). A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci Biotechnol Biochem 70:1622–1628 [View Article][PubMed]
    [Google Scholar]
  35. Navarre W. W., Schneewind O. ( 1994). Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol Microbiol 14:115–121 [View Article][PubMed]
    [Google Scholar]
  36. Navarre W. W., Schneewind O. ( 1999). Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229[PubMed]
    [Google Scholar]
  37. Nobbs A. H., Vajna R. M., Johnson J. R., Zhang Y., Erlandsen S. L., Oli M. W., Kreth J., Brady L. J., Herzberg M. C. ( 2007). Consequences of a sortase A mutation in Streptococcus gordonii. Microbiology 153:4088–4097 [View Article][PubMed]
    [Google Scholar]
  38. O’Donnell S. M., Janssen G. R. ( 2001). The initiation codon affects ribosome binding and translational efficiency in Escherichia coli of cI mRNA with or without the 5′ untranslated leader. J Bacteriol 183:1277–1283 [View Article][PubMed]
    [Google Scholar]
  39. Oh P. L., Benson A. K., Peterson D. A., Patil P. B., Moriyama E. N., Roos S., Walter J. ( 2010). Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J 4:377–387 [View Article][PubMed]
    [Google Scholar]
  40. Petersen T. N., Brunak S., von Heijne G., Nielsen H. ( 2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786 [View Article][PubMed]
    [Google Scholar]
  41. Preidis G. A., Saulnier D. M., Blutt S. E., Mistretta T. A., Riehle K. P., Major A. M., Venable S. F., Barrish J. P., Finegold M. J. & other authors ( 2012). Host response to probiotics determined by nutritional status of rotavirus-infected neonatal mice. J Pediatr Gastroenterol Nutr 55:299–307 [View Article][PubMed]
    [Google Scholar]
  42. Pretzer G., Snel J., Molenaar D., Wiersma A., Bron P. A., Lambert J., de Vos W. M., van der Meer R., Smits M. A., Kleerebezem M. ( 2005). Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187:6128–6136 [View Article][PubMed]
    [Google Scholar]
  43. Remus D. M., Bongers R. S., Meijerink M., Fusetti F., Poolman B., de Vos P., Wells J. M., Kleerebezem M., Bron P. A. ( 2013). Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J Bacteriol 195:502–509 [View Article][PubMed]
    [Google Scholar]
  44. Rojas M., Ascencio F., Conway P. L. ( 2002). Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol 68:2330–2336 [View Article][PubMed]
    [Google Scholar]
  45. Roos S., Jonsson H. ( 2002). A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148:433–442[PubMed]
    [Google Scholar]
  46. Roos S., Aleljung P., Robert N., Lee B., Wadström T., Lindberg M., Jonsson H. ( 1996). A collagen binding protein from Lactobacillus reuteri is part of an ABC transporter system?. FEMS Microbiol Lett 144:33–38 [View Article][PubMed]
    [Google Scholar]
  47. Sánchez B., González-Tejedo C., Ruas-Madiedo P., Urdaci M. C., Margolles A. ( 2011). Lactobacillus plantarum extracellular chitin-binding protein and its role in the interaction between chitin, Caco-2 cells, and mucin. Appl Environ Microbiol 77:1123–1126 [View Article][PubMed]
    [Google Scholar]
  48. Saulnier D. M., Santos F., Roos S., Mistretta T. A., Spinler J. K., Molenaar D., Teusink B., Versalovic J. ( 2011). Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS ONE 6:e18783 [View Article][PubMed]
    [Google Scholar]
  49. Schneewind O., Missiakas D. M. ( 2012). Protein secretion and surface display in Gram-positive bacteria. Phi Trans R Soc Lond B Biol Sci 367:1123–1139 [View Article][PubMed]
    [Google Scholar]
  50. Schneewind O., Model P., Fischetti V. A. ( 1992). Sorting of protein A to the staphylococcal cell wall. Cell 70:267–281 [View Article][PubMed]
    [Google Scholar]
  51. Sørvig E., Mathiesen G., Naterstad K., Eijsink V. G., Axelsson L. ( 2005). High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology 151:2439–2449 [View Article][PubMed]
    [Google Scholar]
  52. Spirig T., Weiner E. M., Clubb R. T. ( 2011). Sortase enzymes in Gram-positive bacteria. Mol Microbiol 82:1044–1059 [View Article][PubMed]
    [Google Scholar]
  53. Szajewska H., Gyrczuk E., Horvath A. ( 2013). Lactobacillus reuteri DSM 17938 for the management of infantile colic in breastfed infants: a randomized, double-blind, placebo-controlled trial. J Pediatr 162:257–262 [View Article][PubMed]
    [Google Scholar]
  54. Thomas C. M., Hong T., van Pijkeren J. P., Hemarajata P., Trinh D. V., Hu W., Britton R. A., Kalkum M., Versalovic J. ( 2012). Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS ONE 7:e31951 [View Article][PubMed]
    [Google Scholar]
  55. Ton-That H., Marraffini L. A., Schneewind O. ( 2004). Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta 1694:269–278 [View Article][PubMed]
    [Google Scholar]
  56. van Pijkeren J. P., Britton R. A. ( 2012). High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res 40:e76 [View Article][PubMed]
    [Google Scholar]
  57. van Pijkeren J. P., Canchaya C., Ryan K. A., Li Y., Claesson M. J., Sheil B., Steidler L., O’Mahony L., Fitzgerald G. F. & other authors ( 2006). Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72:4143–4153 [View Article][PubMed]
    [Google Scholar]
  58. Vélez M. P., De Keersmaecker S. C., Vanderleyden J. ( 2007). Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol Lett 276:140–148 [View Article][PubMed]
    [Google Scholar]
  59. Vélez M. P., Petrova M. I., Lebeer S., Verhoeven T. L., Claes I., Lambrichts I., Tynkkynen S., Vanderleyden J., De Keersmaecker S. C. ( 2010). Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation. FEMS Immunol Med Microbiol 59:386–398[PubMed]
    [Google Scholar]
  60. Vellanoweth R. L., Rabinowitz J. C. ( 1992). The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 6:1105–1114 [View Article][PubMed]
    [Google Scholar]
  61. von Ossowski I., Satokari R., Reunanen J., Lebeer S., De Keersmaecker S. C., Vanderleyden J., de Vos W. M., Palva A. ( 2011). Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 77:4465–4472 [View Article][PubMed]
    [Google Scholar]
  62. Walter J., Chagnaud P., Tannock G. W., Loach D. M., Dal Bello F., Jenkinson H. F., Hammes W. P., Hertel C. ( 2005). A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of Lactobacillus reuteri in the murine gut. Appl Environ Microbiol 71:979–986 [View Article][PubMed]
    [Google Scholar]
  63. Walter J., Britton R. A., Roos S. ( 2011). Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc Natl Acad Sci U S A 108:Suppl. 14645–4652 [View Article][PubMed]
    [Google Scholar]
  64. Wang B., Wei H., Yuan J., Li Q., Li Y., Li N., Li J. ( 2008). Identification of a surface protein from Lactobacillus reuteri JCM1081 that adheres to porcine gastric mucin and human enterocyte-like HT-29 cells. Curr Microbiol 57:33–38 [View Article][PubMed]
    [Google Scholar]
  65. Weizman Z., Asli G., Alsheikh A. ( 2005). Effect of a probiotic infant formula on infections in child care centers: comparison of two probiotic agents. Pediatrics 115:5–9[PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.073551-0
Loading
/content/journal/micro/10.1099/mic.0.073551-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error