1887

Abstract

is a significant cause of fungal meningitis in patients with impaired T cell-mediated immunity (CMI). Experimental pulmonary infection with a strain engineered to produce IFN-γ, H99γ, results in the induction of Th1-type CMI, resolution of the acute infection, and protection against challenge with WT . Given that individuals with suppressed CMI are highly susceptible to pulmonary infection, we sought to determine whether antimicrobial peptides were produced in mice inoculated with H99γ. Thus, we measured levels of antimicrobial peptides lipocalin-2, S100A8, S100A9, calprotectin (S100A8/A9 heterodimer), serum amyloid A-3 (SAA3), and their putative receptors Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products (RAGE) in mice during primary and recall responses against infection. Results showed increased levels of IL-17A and IL-22, cytokines known to modulate antimicrobial peptide production. We also observed increased levels of lipocalin-2, S100A8, S100A9 and SAA3 as well as TLR4 and RAGE macrophages and dendritic cells in mice inoculated with H99γ compared with WT H99. Similar results were observed in the lungs of H99γ-immunized, compared with heat-killed -immunized, mice following challenge with WT yeast. However, IL-22-deficient mice inoculated with H99γ demonstrated antimicrobial peptide production and no change in survival rates compared with WT mice. These studies demonstrate that protection against cryptococcosis is associated with increased production of antimicrobial peptides in the lungs of protected mice that are not solely in response to IL-17A and IL-22 production and may be coincidental rather than functional.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.073445-0
2014-07-01
2020-05-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1440.html?itemId=/content/journal/micro/10.1099/mic.0.073445-0&mimeType=html&fmt=ahah

References

  1. Ather J. L., Ckless K., Martin R., Foley K. L., Suratt B. T., Boyson J. E., Fitzgerald K. A., Flavell R. A., Eisenbarth S. C., Poynter M. E..( 2011;). Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice. J Immunol187:64–73 [CrossRef][PubMed]
    [Google Scholar]
  2. Aujla S. J., Chan Y. R., Zheng M., Fei M., Askew D. J., Pociask D. A., Reinhart T. A., McAllister F., Edeal J..& other authors ( 2008;). IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med14:275–281 [CrossRef][PubMed]
    [Google Scholar]
  3. Bachman M. A., Miller V. L., Weiser J. N..( 2009;). Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLoS Pathog5:e1000622 [CrossRef][PubMed]
    [Google Scholar]
  4. Blasi E., Mazzolla R., Barluzzi R., Mosci P., Bistoni F..( 1994;). Anticryptococcal resistance in the mouse brain: beneficial effects of local administration of heat-inactivated yeast cells. Infect Immun62:3189–3196[PubMed]
    [Google Scholar]
  5. Borregaard N., Cowland J. B..( 2006;). Neutrophil gelatinase-associated lipocalin, a siderophore-binding eukaryotic protein. Biometals19:211–215 [CrossRef][PubMed]
    [Google Scholar]
  6. Buchanan K. L., Doyle H. A..( 2000;). Requirement for CD4+ T lymphocytes in host resistance against Cryptococcus neoformans in the central nervous system of immunized mice. Infect Immun68:456–462 [CrossRef][PubMed]
    [Google Scholar]
  7. Chan Y. R., Liu J. S., Pociask D. A., Zheng M., Mietzner T. A., Berger T., Mak T. W., Clifton M. C., Strong R. K..& other authors ( 2009;). Lipocalin 2 is required for pulmonary host defense against Klebsiella infection. J Immunol182:4947–4956 [CrossRef][PubMed]
    [Google Scholar]
  8. Chuck S. L., Sande M. A..( 1989;). Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med321:794–799 [CrossRef][PubMed]
    [Google Scholar]
  9. De Luca A., Zelante T., D’Angelo C., Zagarella S., Fallarino F., Spreca A., Iannitti R. G., Bonifazi P., Renauld J. C..& other authors ( 2010;). IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol3:361–373 [CrossRef][PubMed]
    [Google Scholar]
  10. De Luca A., Carvalho A., Cunha C., Iannitti R. G., Pitzurra L., Giovannini G., Mencacci A., Bartolommei L., Moretti S..& other authors ( 2013;). IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathog9:e1003486 [CrossRef][PubMed]
    [Google Scholar]
  11. Ehrchen J. M., Sunderkötter C., Foell D., Vogl T., Roth J..( 2009;). The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol86:557–566 [CrossRef][PubMed]
    [Google Scholar]
  12. Eyerich K., Foerster S., Rombold S., Seidl H. P., Behrendt H., Hofmann H., Ring J., Traidl-Hoffmann C..( 2008;). Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J Invest Dermatol128:2640–2645 [CrossRef][PubMed]
    [Google Scholar]
  13. Fehrenbach H., Kasper M., Tschernig T., Shearman M. S., Schuh D., Müller M..( 1998;). Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell Mol Biol (Noisy-le-grand)44:1147–1157[PubMed]
    [Google Scholar]
  14. Flo T. H., Smith K. D., Sato S., Rodriguez D. J., Holmes M. A., Strong R. K., Akira S., Aderem A..( 2004;). Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature432:917–921 [CrossRef][PubMed]
    [Google Scholar]
  15. Foell D., Wittkowski H., Vogl T., Roth J..( 2007;). S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol81:28–37 [CrossRef][PubMed]
    [Google Scholar]
  16. Ganz T..( 2003;). The role of antimicrobial peptides in innate immunity. Integr Comp Biol43:300–304 [CrossRef][PubMed]
    [Google Scholar]
  17. Gessner M. A., Werner J. L., Lilly L. M., Nelson M. P., Metz A. E., Dunaway C. W., Chan Y. R., Ouyang W., Brown G. D..& other authors ( 2012;). Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect Immun80:410–417 [CrossRef][PubMed]
    [Google Scholar]
  18. Hardison S. E., Wozniak K. L., Kolls J. K., Wormley F. L. Jr.( 2010;). Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection. Infect Immun78:5341–5351 [CrossRef][PubMed]
    [Google Scholar]
  19. Herold K., Moser B., Chen Y., Zeng S., Yan S. F., Ramasamy R., Emond J., Clynes R., Schmidt A. M..( 2007;). Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. J Leukoc Biol82:204–212 [CrossRef][PubMed]
    [Google Scholar]
  20. Hill J. O., Harmsen A. G..( 1991;). Intrapulmonary growth and dissemination of an avirulent strain of Cryptococcus neoformans in mice depleted of CD4+ or CD8+ T cells. J Exp Med173:755–758 [CrossRef][PubMed]
    [Google Scholar]
  21. Hiratsuka S., Watanabe A., Sakurai Y., Akashi-Takamura S., Ishibashi S., Miyake K., Shibuya M., Akira S., Aburatani H., Maru Y..( 2008;). The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol10:1349–1355 [CrossRef][PubMed]
    [Google Scholar]
  22. Hole C. R., Bui H., Wormley F. L. Jr, Wozniak K. L..( 2012;). Mechanisms of dendritic cell lysosomal killing of Cryptococcus. Sci Rep2:739 [CrossRef][PubMed]
    [Google Scholar]
  23. Huang W., Na L., Fidel P. L., Schwarzenberger P..( 2004;). Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis190:624–631 [CrossRef][PubMed]
    [Google Scholar]
  24. Huffnagle G. B., Yates J. L., Lipscomb M. F..( 1991;). T cell-mediated immunity in the lung: a Cryptococcus neoformans pulmonary infection model using SCID and athymic nude mice. Infect Immun59:1423–1433[PubMed]
    [Google Scholar]
  25. Jäger S., Stange E. F., Wehkamp J..( 2010;). Antimicrobial peptides in gastrointestinal inflammation. Int J Inflamm2010:910283 [CrossRef][PubMed]
    [Google Scholar]
  26. Johnston D. A., Yano J., Fidel P. L. Jr, Eberle K. E., Palmer G. E..( 2013;). Engineering Candida albicans to secrete a host immunomodulatory factor. FEMS Microbiol Lett346:131–139 [CrossRef][PubMed]
    [Google Scholar]
  27. Katsuoka F., Kawakami Y., Arai T., Imuta H., Fujiwara M., Kanma H., Yamashita K..( 1997;). Type II alveolar epithelial cells in lung express receptor for advanced glycation end products (RAGE) gene. Biochem Biophys Res Commun238:512–516 [CrossRef][PubMed]
    [Google Scholar]
  28. Kolls J. K., McCray P. B. Jr, Chan Y. R..( 2008;). Cytokine-mediated regulation of antimicrobial proteins. Nat Rev Immunol8:829–835 [CrossRef][PubMed]
    [Google Scholar]
  29. Lagasse E., Clerc R. G..( 1988;). Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation. Mol Cell Biol8:2402–2410[PubMed]
    [Google Scholar]
  30. Levitz S. M..( 1991;). The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. Rev Infect Dis13:1163–1169 [CrossRef][PubMed]
    [Google Scholar]
  31. Li C., Chan Y. R..( 2011;). Lipocalin 2 regulation and its complex role in inflammation and cancer. Cytokine56:435–441 [CrossRef][PubMed]
    [Google Scholar]
  32. Liang S. C., Tan X. Y., Luxenberg D. P., Karim R., Dunussi-Joannopoulos K., Collins M., Fouser L. A..( 2006;). Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med203:2271–2279 [CrossRef][PubMed]
    [Google Scholar]
  33. Mambula S. S., Simons E. R., Hastey R., Selsted M. E., Levitz S. M..( 2000;). Human neutrophil-mediated nonoxidative antifungal activity against Cryptococcus neoformans. Infect Immun68:6257–6264 [CrossRef][PubMed]
    [Google Scholar]
  34. McCormick A., Heesemann L., Wagener J., Marcos V., Hartl D., Loeffler J., Heesemann J., Ebel F..( 2010;). NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect12:928–936 [CrossRef][PubMed]
    [Google Scholar]
  35. Mitchell T. G., Perfect J. R..( 1995;). Cryptococcosis in the era of AIDS–100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev8:515–548[PubMed]
    [Google Scholar]
  36. Miyakawa Y., Ratnakar P., Rao A. G., Costello M. L., Mathieu-Costello O., Lehrer R. I., Catanzaro A..( 1996;). In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis. Infect Immun64:926–932[PubMed]
    [Google Scholar]
  37. Mody C. H., Lipscomb M. F., Street N. E., Toews G. B..( 1990;). Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. J Immunol144:1472–1477[PubMed]
    [Google Scholar]
  38. Odink K., Cerletti N., Brüggen J., Clerc R. G., Tarcsay L., Zwadlo G., Gerhards G., Schlegel R., Sorg C..( 1987;). Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature330:80–82 [CrossRef][PubMed]
    [Google Scholar]
  39. Pociask D. A., Scheller E. V., Mandalapu S., McHugh K. J., Enelow R. I., Fattman C. L., Kolls J. K., Alcorn J. F..( 2013;). IL-22 is essential for lung epithelial repair following influenza infection. Am J Pathol182:1286–1296 [CrossRef][PubMed]
    [Google Scholar]
  40. Ramirez-Ortiz Z. G., Lee C. K., Wang J. P., Boon L., Specht C. A., Levitz S. M..( 2011;). A nonredundant role for plasmacytoid dendritic cells in host defense against the human fungal pathogen Aspergillus fumigatus. Cell Host Microbe9:415–424 [CrossRef][PubMed]
    [Google Scholar]
  41. Shoham S., Levitz S. M..( 2005;). The immune response to fungal infections. Br J Haematol129:569–582 [CrossRef][PubMed]
    [Google Scholar]
  42. Singh N., Gayowski T., Wagener M. M., Marino I. R..( 1997;). Clinical spectrum of invasive cryptococcosis in liver transplant recipients receiving tacrolimus. Clin Transplant11:66–70[PubMed]
    [Google Scholar]
  43. Singh N., Dromer F., Perfect J. R., Lortholary O..( 2008;). Cryptococcosis in solid organ transplant recipients: current state of the science. Clin Infect Dis47:1321–1327 [CrossRef][PubMed]
    [Google Scholar]
  44. Uhlar C. M., Whitehead A. S..( 1999;). Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem265:501–523 [CrossRef][PubMed]
    [Google Scholar]
  45. Urban C. F., Ermert D., Schmid M., Abu-Abed U., Goosmann C., Nacken W., Brinkmann V., Jungblut P. R., Zychlinsky A..( 2009;). Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog5:e1000639 [CrossRef][PubMed]
    [Google Scholar]
  46. Wolk K., Warszawska K., Hoeflich C., Witte E., Schneider-Burrus S., Witte K., Kunz S., Buss A., Roewert H. J..& other authors ( 2011;). Deficiency of IL-22 contributes to a chronic inflammatory disease: pathogenetic mechanisms in acne inversa. J Immunol186:1228–1239 [CrossRef][PubMed]
    [Google Scholar]
  47. Wormley F. L. Jr, Perfect J. R., Steele C., Cox G. M..( 2007;). Protection against cryptococcosis by using a murine gamma interferon-producing Cryptococcus neoformans strain. Infect Immun75:1453–1462 [CrossRef][PubMed]
    [Google Scholar]
  48. Wozniak K. L., Levitz S. M..( 2009;). Isolation and purification of antigenic components of Cryptococcus. Methods Mol Biol470:71–83 [CrossRef][PubMed]
    [Google Scholar]
  49. Wozniak K. L., Ravi S., Macias S., Young M. L., Olszewski M. A., Steele C., Wormley F. L..( 2009;). Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis. PLoS ONE4:e6854 [CrossRef][PubMed]
    [Google Scholar]
  50. Wozniak K. L., Hardison S. E., Kolls J. K., Wormley F. L..( 2011;). Role of IL-17A on resolution of pulmonary C. neoformans infection. PLoS ONE6:e17204 [CrossRef][PubMed]
    [Google Scholar]
  51. Yano J., Lilly E., Barousse M., Fidel P. L. Jr.( 2010;). Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect Immun78:5126–5137 [CrossRef][PubMed]
    [Google Scholar]
  52. Yano J., Noverr M. C., Fidel P. L. Jr.( 2012a;). Cytokines in the host response to Candida vaginitis: identifying a role for non-classical immune mediators, S100 alarmins. Cytokine58:118–128 [CrossRef][PubMed]
    [Google Scholar]
  53. Yano J., Kolls J. K., Happel K. I., Wormley F., Wozniak K. L., Fidel P. L. Jr.( 2012b;). The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway. PLoS ONE7:e46311 [CrossRef][PubMed]
    [Google Scholar]
  54. Zasloff M..( 2002;). Antimicrobial peptides of multicellular organisms. Nature415:389–395 [CrossRef][PubMed]
    [Google Scholar]
  55. Zwadlo G., Brüggen J., Gerhards G., Schlegel R., Sorg C..( 1988;). Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues. Clin Exp Immunol72:510–515[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.073445-0
Loading
/content/journal/micro/10.1099/mic.0.073445-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error