1887

Abstract

is a significant cause of fungal meningitis in patients with impaired T cell-mediated immunity (CMI). Experimental pulmonary infection with a strain engineered to produce IFN-γ, H99γ, results in the induction of Th1-type CMI, resolution of the acute infection, and protection against challenge with WT . Given that individuals with suppressed CMI are highly susceptible to pulmonary infection, we sought to determine whether antimicrobial peptides were produced in mice inoculated with H99γ. Thus, we measured levels of antimicrobial peptides lipocalin-2, S100A8, S100A9, calprotectin (S100A8/A9 heterodimer), serum amyloid A-3 (SAA3), and their putative receptors Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products (RAGE) in mice during primary and recall responses against infection. Results showed increased levels of IL-17A and IL-22, cytokines known to modulate antimicrobial peptide production. We also observed increased levels of lipocalin-2, S100A8, S100A9 and SAA3 as well as TLR4 and RAGE macrophages and dendritic cells in mice inoculated with H99γ compared with WT H99. Similar results were observed in the lungs of H99γ-immunized, compared with heat-killed -immunized, mice following challenge with WT yeast. However, IL-22-deficient mice inoculated with H99γ demonstrated antimicrobial peptide production and no change in survival rates compared with WT mice. These studies demonstrate that protection against cryptococcosis is associated with increased production of antimicrobial peptides in the lungs of protected mice that are not solely in response to IL-17A and IL-22 production and may be coincidental rather than functional.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.073445-0
2014-07-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1440.html?itemId=/content/journal/micro/10.1099/mic.0.073445-0&mimeType=html&fmt=ahah

References

  1. Ather J. L., Ckless K., Martin R., Foley K. L., Suratt B. T., Boyson J. E., Fitzgerald K. A., Flavell R. A., Eisenbarth S. C., Poynter M. E.. ( 2011;). Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice. . J Immunol 187:, 64–73. [CrossRef][PubMed]
    [Google Scholar]
  2. Aujla S. J., Chan Y. R., Zheng M., Fei M., Askew D. J., Pociask D. A., Reinhart T. A., McAllister F., Edeal J.. & other authors ( 2008;). IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. . Nat Med 14:, 275–281. [CrossRef][PubMed]
    [Google Scholar]
  3. Bachman M. A., Miller V. L., Weiser J. N.. ( 2009;). Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. . PLoS Pathog 5:, e1000622. [CrossRef][PubMed]
    [Google Scholar]
  4. Blasi E., Mazzolla R., Barluzzi R., Mosci P., Bistoni F.. ( 1994;). Anticryptococcal resistance in the mouse brain: beneficial effects of local administration of heat-inactivated yeast cells. . Infect Immun 62:, 3189–3196.[PubMed]
    [Google Scholar]
  5. Borregaard N., Cowland J. B.. ( 2006;). Neutrophil gelatinase-associated lipocalin, a siderophore-binding eukaryotic protein. . Biometals 19:, 211–215. [CrossRef][PubMed]
    [Google Scholar]
  6. Buchanan K. L., Doyle H. A.. ( 2000;). Requirement for CD4+ T lymphocytes in host resistance against Cryptococcus neoformans in the central nervous system of immunized mice. . Infect Immun 68:, 456–462. [CrossRef][PubMed]
    [Google Scholar]
  7. Chan Y. R., Liu J. S., Pociask D. A., Zheng M., Mietzner T. A., Berger T., Mak T. W., Clifton M. C., Strong R. K.. & other authors ( 2009;). Lipocalin 2 is required for pulmonary host defense against Klebsiella infection. . J Immunol 182:, 4947–4956. [CrossRef][PubMed]
    [Google Scholar]
  8. Chuck S. L., Sande M. A.. ( 1989;). Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. . N Engl J Med 321:, 794–799. [CrossRef][PubMed]
    [Google Scholar]
  9. De Luca A., Zelante T., D’Angelo C., Zagarella S., Fallarino F., Spreca A., Iannitti R. G., Bonifazi P., Renauld J. C.. & other authors ( 2010;). IL-22 defines a novel immune pathway of antifungal resistance. . Mucosal Immunol 3:, 361–373. [CrossRef][PubMed]
    [Google Scholar]
  10. De Luca A., Carvalho A., Cunha C., Iannitti R. G., Pitzurra L., Giovannini G., Mencacci A., Bartolommei L., Moretti S.. & other authors ( 2013;). IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. . PLoS Pathog 9:, e1003486. [CrossRef][PubMed]
    [Google Scholar]
  11. Ehrchen J. M., Sunderkötter C., Foell D., Vogl T., Roth J.. ( 2009;). The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. . J Leukoc Biol 86:, 557–566. [CrossRef][PubMed]
    [Google Scholar]
  12. Eyerich K., Foerster S., Rombold S., Seidl H. P., Behrendt H., Hofmann H., Ring J., Traidl-Hoffmann C.. ( 2008;). Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. . J Invest Dermatol 128:, 2640–2645. [CrossRef][PubMed]
    [Google Scholar]
  13. Fehrenbach H., Kasper M., Tschernig T., Shearman M. S., Schuh D., Müller M.. ( 1998;). Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. . Cell Mol Biol (Noisy-le-grand) 44:, 1147–1157.[PubMed]
    [Google Scholar]
  14. Flo T. H., Smith K. D., Sato S., Rodriguez D. J., Holmes M. A., Strong R. K., Akira S., Aderem A.. ( 2004;). Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. . Nature 432:, 917–921. [CrossRef][PubMed]
    [Google Scholar]
  15. Foell D., Wittkowski H., Vogl T., Roth J.. ( 2007;). S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. . J Leukoc Biol 81:, 28–37. [CrossRef][PubMed]
    [Google Scholar]
  16. Ganz T.. ( 2003;). The role of antimicrobial peptides in innate immunity. . Integr Comp Biol 43:, 300–304. [CrossRef][PubMed]
    [Google Scholar]
  17. Gessner M. A., Werner J. L., Lilly L. M., Nelson M. P., Metz A. E., Dunaway C. W., Chan Y. R., Ouyang W., Brown G. D.. & other authors ( 2012;). Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. . Infect Immun 80:, 410–417. [CrossRef][PubMed]
    [Google Scholar]
  18. Hardison S. E., Wozniak K. L., Kolls J. K., Wormley F. L. Jr. ( 2010;). Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection. . Infect Immun 78:, 5341–5351. [CrossRef][PubMed]
    [Google Scholar]
  19. Herold K., Moser B., Chen Y., Zeng S., Yan S. F., Ramasamy R., Emond J., Clynes R., Schmidt A. M.. ( 2007;). Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. . J Leukoc Biol 82:, 204–212. [CrossRef][PubMed]
    [Google Scholar]
  20. Hill J. O., Harmsen A. G.. ( 1991;). Intrapulmonary growth and dissemination of an avirulent strain of Cryptococcus neoformans in mice depleted of CD4+ or CD8+ T cells. . J Exp Med 173:, 755–758. [CrossRef][PubMed]
    [Google Scholar]
  21. Hiratsuka S., Watanabe A., Sakurai Y., Akashi-Takamura S., Ishibashi S., Miyake K., Shibuya M., Akira S., Aburatani H., Maru Y.. ( 2008;). The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase. . Nat Cell Biol 10:, 1349–1355. [CrossRef][PubMed]
    [Google Scholar]
  22. Hole C. R., Bui H., Wormley F. L. Jr, Wozniak K. L.. ( 2012;). Mechanisms of dendritic cell lysosomal killing of Cryptococcus. . Sci Rep 2:, 739. [CrossRef][PubMed]
    [Google Scholar]
  23. Huang W., Na L., Fidel P. L., Schwarzenberger P.. ( 2004;). Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. . J Infect Dis 190:, 624–631. [CrossRef][PubMed]
    [Google Scholar]
  24. Huffnagle G. B., Yates J. L., Lipscomb M. F.. ( 1991;). T cell-mediated immunity in the lung: a Cryptococcus neoformans pulmonary infection model using SCID and athymic nude mice. . Infect Immun 59:, 1423–1433.[PubMed]
    [Google Scholar]
  25. Jäger S., Stange E. F., Wehkamp J.. ( 2010;). Antimicrobial peptides in gastrointestinal inflammation. . Int J Inflamm 2010:, 910283. [CrossRef][PubMed]
    [Google Scholar]
  26. Johnston D. A., Yano J., Fidel P. L. Jr, Eberle K. E., Palmer G. E.. ( 2013;). Engineering Candida albicans to secrete a host immunomodulatory factor. . FEMS Microbiol Lett 346:, 131–139. [CrossRef][PubMed]
    [Google Scholar]
  27. Katsuoka F., Kawakami Y., Arai T., Imuta H., Fujiwara M., Kanma H., Yamashita K.. ( 1997;). Type II alveolar epithelial cells in lung express receptor for advanced glycation end products (RAGE) gene. . Biochem Biophys Res Commun 238:, 512–516. [CrossRef][PubMed]
    [Google Scholar]
  28. Kolls J. K., McCray P. B. Jr, Chan Y. R.. ( 2008;). Cytokine-mediated regulation of antimicrobial proteins. . Nat Rev Immunol 8:, 829–835. [CrossRef][PubMed]
    [Google Scholar]
  29. Lagasse E., Clerc R. G.. ( 1988;). Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation. . Mol Cell Biol 8:, 2402–2410.[PubMed]
    [Google Scholar]
  30. Levitz S. M.. ( 1991;). The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. . Rev Infect Dis 13:, 1163–1169. [CrossRef][PubMed]
    [Google Scholar]
  31. Li C., Chan Y. R.. ( 2011;). Lipocalin 2 regulation and its complex role in inflammation and cancer. . Cytokine 56:, 435–441. [CrossRef][PubMed]
    [Google Scholar]
  32. Liang S. C., Tan X. Y., Luxenberg D. P., Karim R., Dunussi-Joannopoulos K., Collins M., Fouser L. A.. ( 2006;). Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. . J Exp Med 203:, 2271–2279. [CrossRef][PubMed]
    [Google Scholar]
  33. Mambula S. S., Simons E. R., Hastey R., Selsted M. E., Levitz S. M.. ( 2000;). Human neutrophil-mediated nonoxidative antifungal activity against Cryptococcus neoformans. . Infect Immun 68:, 6257–6264. [CrossRef][PubMed]
    [Google Scholar]
  34. McCormick A., Heesemann L., Wagener J., Marcos V., Hartl D., Loeffler J., Heesemann J., Ebel F.. ( 2010;). NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. . Microbes Infect 12:, 928–936. [CrossRef][PubMed]
    [Google Scholar]
  35. Mitchell T. G., Perfect J. R.. ( 1995;). Cryptococcosis in the era of AIDS–100 years after the discovery of Cryptococcus neoformans. . Clin Microbiol Rev 8:, 515–548.[PubMed]
    [Google Scholar]
  36. Miyakawa Y., Ratnakar P., Rao A. G., Costello M. L., Mathieu-Costello O., Lehrer R. I., Catanzaro A.. ( 1996;). In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis. . Infect Immun 64:, 926–932.[PubMed]
    [Google Scholar]
  37. Mody C. H., Lipscomb M. F., Street N. E., Toews G. B.. ( 1990;). Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. . J Immunol 144:, 1472–1477.[PubMed]
    [Google Scholar]
  38. Odink K., Cerletti N., Brüggen J., Clerc R. G., Tarcsay L., Zwadlo G., Gerhards G., Schlegel R., Sorg C.. ( 1987;). Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. . Nature 330:, 80–82. [CrossRef][PubMed]
    [Google Scholar]
  39. Pociask D. A., Scheller E. V., Mandalapu S., McHugh K. J., Enelow R. I., Fattman C. L., Kolls J. K., Alcorn J. F.. ( 2013;). IL-22 is essential for lung epithelial repair following influenza infection. . Am J Pathol 182:, 1286–1296. [CrossRef][PubMed]
    [Google Scholar]
  40. Ramirez-Ortiz Z. G., Lee C. K., Wang J. P., Boon L., Specht C. A., Levitz S. M.. ( 2011;). A nonredundant role for plasmacytoid dendritic cells in host defense against the human fungal pathogen Aspergillus fumigatus. . Cell Host Microbe 9:, 415–424. [CrossRef][PubMed]
    [Google Scholar]
  41. Shoham S., Levitz S. M.. ( 2005;). The immune response to fungal infections. . Br J Haematol 129:, 569–582. [CrossRef][PubMed]
    [Google Scholar]
  42. Singh N., Gayowski T., Wagener M. M., Marino I. R.. ( 1997;). Clinical spectrum of invasive cryptococcosis in liver transplant recipients receiving tacrolimus. . Clin Transplant 11:, 66–70.[PubMed]
    [Google Scholar]
  43. Singh N., Dromer F., Perfect J. R., Lortholary O.. ( 2008;). Cryptococcosis in solid organ transplant recipients: current state of the science. . Clin Infect Dis 47:, 1321–1327. [CrossRef][PubMed]
    [Google Scholar]
  44. Uhlar C. M., Whitehead A. S.. ( 1999;). Serum amyloid A, the major vertebrate acute-phase reactant. . Eur J Biochem 265:, 501–523. [CrossRef][PubMed]
    [Google Scholar]
  45. Urban C. F., Ermert D., Schmid M., Abu-Abed U., Goosmann C., Nacken W., Brinkmann V., Jungblut P. R., Zychlinsky A.. ( 2009;). Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. . PLoS Pathog 5:, e1000639. [CrossRef][PubMed]
    [Google Scholar]
  46. Wolk K., Warszawska K., Hoeflich C., Witte E., Schneider-Burrus S., Witte K., Kunz S., Buss A., Roewert H. J.. & other authors ( 2011;). Deficiency of IL-22 contributes to a chronic inflammatory disease: pathogenetic mechanisms in acne inversa. . J Immunol 186:, 1228–1239. [CrossRef][PubMed]
    [Google Scholar]
  47. Wormley F. L. Jr, Perfect J. R., Steele C., Cox G. M.. ( 2007;). Protection against cryptococcosis by using a murine gamma interferon-producing Cryptococcus neoformans strain. . Infect Immun 75:, 1453–1462. [CrossRef][PubMed]
    [Google Scholar]
  48. Wozniak K. L., Levitz S. M.. ( 2009;). Isolation and purification of antigenic components of Cryptococcus. . Methods Mol Biol 470:, 71–83. [CrossRef][PubMed]
    [Google Scholar]
  49. Wozniak K. L., Ravi S., Macias S., Young M. L., Olszewski M. A., Steele C., Wormley F. L.. ( 2009;). Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis. . PLoS ONE 4:, e6854. [CrossRef][PubMed]
    [Google Scholar]
  50. Wozniak K. L., Hardison S. E., Kolls J. K., Wormley F. L.. ( 2011;). Role of IL-17A on resolution of pulmonary C. neoformans infection. . PLoS ONE 6:, e17204. [CrossRef][PubMed]
    [Google Scholar]
  51. Yano J., Lilly E., Barousse M., Fidel P. L. Jr. ( 2010;). Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. . Infect Immun 78:, 5126–5137. [CrossRef][PubMed]
    [Google Scholar]
  52. Yano J., Noverr M. C., Fidel P. L. Jr. ( 2012a;). Cytokines in the host response to Candida vaginitis: identifying a role for non-classical immune mediators, S100 alarmins. . Cytokine 58:, 118–128. [CrossRef][PubMed]
    [Google Scholar]
  53. Yano J., Kolls J. K., Happel K. I., Wormley F., Wozniak K. L., Fidel P. L. Jr. ( 2012b;). The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway. . PLoS ONE 7:, e46311. [CrossRef][PubMed]
    [Google Scholar]
  54. Zasloff M.. ( 2002;). Antimicrobial peptides of multicellular organisms. . Nature 415:, 389–395. [CrossRef][PubMed]
    [Google Scholar]
  55. Zwadlo G., Brüggen J., Gerhards G., Schlegel R., Sorg C.. ( 1988;). Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues. . Clin Exp Immunol 72:, 510–515.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.073445-0
Loading
/content/journal/micro/10.1099/mic.0.073445-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error