1887

Abstract

In , a cyst-forming bacterium, the alternative sigma factor RpoS is essential to the formation of cysts resistant to desiccation and to synthesis of the cyst-specific lipids, alkylresorcinols. In this study, we carried out a proteome analysis of vegetative cells and cysts of strain AEIV and its mutant derivative AErpoS. This analysis allowed us to identify a small heat-shock protein, Hsp20, as one of the most abundant proteins of cysts regulated by RpoS. Inactivation of did not affect the synthesis of alkylresorcinols or the formation of cysts with WT morphology; however, the cysts formed by the mutant strain were unable to resist desiccation. We also demonstrated that expression of from an RpoS-independent promoter in the AErpoS mutant strain is not enough to restore the phenotype of resistance to desiccation. These results indicate that Hsp20 is essential for the resistance to desiccation of cysts, probably by preventing the aggregation of proteins caused by the lack of water. To our knowledge, this is the first report of a small heat-shock protein that is essential for desiccation resistance in bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.073353-0
2014-03-01
2020-05-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/3/479.html?itemId=/content/journal/micro/10.1099/mic.0.073353-0&mimeType=html&fmt=ahah

References

  1. Alexeyev M. F., Shokolenko I. N., Croughan T. P..( 1995;). Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene160:63–67 [CrossRef][PubMed]
    [Google Scholar]
  2. Arrigo A. P., Landry J..( 1994;). Expression and function of the low-molecular-weight heat shock proteins. The Biology of Heat Shock Proteins and Molecular Chaperones335–373 Morimoto R., Tissieres A., Georgeopoulos C.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  3. Bali A., Blanco G., Hill S., Kennedy C..( 1992;). Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Appl Environ Microbiol58:1711–1718[PubMed]
    [Google Scholar]
  4. Campos M., Martínez-Salazar J. M., Lloret L., Moreno S., Núñez C., Espín G., Soberón-Chávez G..( 1996;). Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobacter vinelandii. J Bacteriol178:1793–1799[PubMed]
    [Google Scholar]
  5. Castañeda M., Sánchez J., Moreno S., Núñez C., Espín G..( 2001;). The global regulators GacA and sigma(S) form part of a cascade that controls alginate production in Azotobacter vinelandii. J Bacteriol183:6787–6793 [CrossRef][PubMed]
    [Google Scholar]
  6. Clegg J. S..( 2001;). Cryptobiosis – a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol128:613–624 [CrossRef][PubMed]
    [Google Scholar]
  7. Clegg J. S..( 2005;). Desiccation tolerance in encysted embryos of the animal extremophile, Artemia. Integr Comp Biol45:715–724 [CrossRef][PubMed]
    [Google Scholar]
  8. Cocotl-Yañez M., Sampieri A., Moreno S., Núñez C., Castañeda M., Segura D., Espín G..( 2011;). Roles of RpoS and PsrA in cyst formation and alkylresorcinol synthesis in Azotobacter vinelandii. Microbiology157:1685–1693 [CrossRef][PubMed]
    [Google Scholar]
  9. Dubey A. K., Baker C. S., Romeo T., Babitzke P..( 2005;). RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. RNA11:1579–1587 [CrossRef][PubMed]
    [Google Scholar]
  10. Ehrnsperger M., Gräber S., Gaestel M., Buchner J..( 1997;). Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J16:221–229 [CrossRef][PubMed]
    [Google Scholar]
  11. Encarnación S., Guzmán Y., Dunn M. F., Hernández M., del Carmen Vargas M., Mora J..( 2003;). Proteome analysis of aerobic and fermentative metabolism in Rhizobium etli CE3. Proteomics3:1077–1085 [CrossRef][PubMed]
    [Google Scholar]
  12. Grossman A. D., Straus D. B., Walter W. A., Gross C. A..( 1987;). Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. Genes Dev1:179–184 [CrossRef][PubMed]
    [Google Scholar]
  13. Gusev O., Cornette R., Kikawada T., Okuda T..( 2011;). Expression of heat shock protein-coding genes associated with anhydrobiosis in an African chironomid Polypedilum vanderplanki. Cell Stress Chaperones16:81–90 [CrossRef][PubMed]
    [Google Scholar]
  14. Hanahan D..( 1983;). Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580 [CrossRef][PubMed]
    [Google Scholar]
  15. Haslbeck M., Walke S., Stromer T., Ehrnsperger M., White H. E., Chen S., Saibil H. R., Buchner J..( 1999;). Hsp26: a temperature-regulated chaperone. EMBO J18:6744–6751 [CrossRef][PubMed]
    [Google Scholar]
  16. Hernandez-Eligio A., Moreno S., Castellanos M., Castañeda M., Nuñez C., Muriel-Millan L. F., Espín G..( 2012;). RsmA post-transcriptionally controls PhbR expression and polyhydroxybutyrate biosynthesis in Azotobacter vinelandii. Microbiology158:1953–1963 [CrossRef][PubMed]
    [Google Scholar]
  17. Høidal H. K., Glaerum Svanem B. I., Gimmestad M., Valla S..( 2000;). Mannuronan C-5 epimerases and cellular differentiation of Azotobacter vinelandii. Environ Microbiol2:27–38 [CrossRef][PubMed]
    [Google Scholar]
  18. Hurkman W. J., Tanaka C. K..( 1986;). Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol81:802–806 [CrossRef][PubMed]
    [Google Scholar]
  19. Isaza C. E., Silaghi-Dumitrescu R., Iyer R. B., Kurtz D. M. Jr, Chan M. K..( 2006;). Structural basis for O2 sensing by the hemerythrin-like domain of a bacterial chemotaxis protein: substrate tunnel and fluxional N terminus. Biochemistry45:9023–9031 [CrossRef][PubMed]
    [Google Scholar]
  20. Karlsen O. A., Ramsevik L., Bruseth L. J., Larsen Ø., Brenner A., Berven F. S., Jensen H. B., Lillehaug J. R..( 2005;). Characterization of a prokaryotic haemerythrin from the methanotrophic bacterium Methylococcus capsulatus (Bath). FEBS J272:2428–2440 [CrossRef][PubMed]
    [Google Scholar]
  21. Kennedy C., Gamal R., Humphrey R., Ramos J., Brigle K., Dean D..( 1986;). The nifH, nifM, and nifN genes of Azotobacter vinelandii: characterization by Tn5 mutagenesis and isolation from pLARF1 gene banks. Mol Gen Genet205:318–325 [CrossRef]
    [Google Scholar]
  22. Kim K. K., Kim R., Kim S. H..( 1998;). Crystal structure of a small heat-shock protein. Nature394:595–599 [CrossRef][PubMed]
    [Google Scholar]
  23. King A. M., Toxopeus J., MacRae T. H..( 2013;). Functional differentiation of small heat shock proteins in diapause-destined Artemia embryos. FEBS J280:4761–4772 [CrossRef][PubMed]
    [Google Scholar]
  24. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M..( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  25. Lee G. J., Roseman A. M., Saibil H. R., Vierling E..( 1997;). A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J16:659–671 [CrossRef][PubMed]
    [Google Scholar]
  26. Manzo J., Cocotl-Yañez M., Tzontecomani T., Martínez V. M., Bustillos R., Velásquez C., Goiz Y., Solís Y., López L..& other authors ( 2011;). Post-transcriptional regulation of the alginate biosynthetic gene algD by the Gac/Rsm system in Azotobacter vinelandii. J Mol Microbiol Biotechnol21:147–159 [CrossRef][PubMed]
    [Google Scholar]
  27. Mejía-Ruíz H., Moreno S., Guzmán J., Nájera R., León R., Soberón-Chávez G., Espín G..( 1997;). Isolation and characterization of an Azotobacter vinelandii algK mutant. FEMS Microbiol Lett156:101–106 [CrossRef][PubMed]
    [Google Scholar]
  28. Noguez R., Segura D., Moreno S., Hernández A., Juárez K., Espín G..( 2008;). Enzyme I NPr, NPr and IIA Ntr are involved in regulation of the poly-beta-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii. J Mol Microbiol Biotechnol15:244–254 [CrossRef][PubMed]
    [Google Scholar]
  29. Page W. J., von Tigerstrom M..( 1978;). Induction of transformation competence in Azotobacter vinelandii iron-limited cultures. Can J Microbiol24:1590–1594 [CrossRef][PubMed]
    [Google Scholar]
  30. Peralta-Gil M., Segura D., Guzmán J., Servín-González L., Espín G..( 2002;). Expression of the Azotobacter vinelandii poly-beta-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J Bacteriol184:5672–5677 [CrossRef][PubMed]
    [Google Scholar]
  31. Reusch R. N., Sadoff H. L..( 1983;). Novel lipid components of the Azotobacter vinelandii cyst membrane. Nature302:268–270 [CrossRef][PubMed]
    [Google Scholar]
  32. Romero Y., Moreno S., Guzmán J., Espín G., Segura D..( 2013;). Sigma factor RpoS controls alkylresorcinol synthesis through ArpR, a LysR-type regulatory protein, during encystment of Azotobacter vinelandii. J Bacteriol195:1834–1844 [CrossRef][PubMed]
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T..( 1989;). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Segura D., Cruz T., Espín G..( 2003;). Encystment and alkylresorcinol production by Azotobacter vinelandii strains impaired in poly-beta-hydroxybutyrate synthesis. Arch Microbiol179:437–443[PubMed]
    [Google Scholar]
  35. Segura D., Vite O., Romero Y., Moreno S., Castañeda M., Espín G..( 2009;). Isolation and characterization of Azotobacter vinelandii mutants impaired in alkylresorcinol synthesis: alkylresorcinols are not essential for cyst desiccation resistance. J Bacteriol191:3142–3148 [CrossRef][PubMed]
    [Google Scholar]
  36. Setubal J. C., dos Santos P., Goldman B. S., Ertesvåg H., Espín G., Rubio L. M., Valla S., Almeida N. F., Balasubramanian D..& other authors ( 2009;). Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol191:4534–4545 [CrossRef][PubMed]
    [Google Scholar]
  37. Steigedal M., Sletta H., Moreno S., Maerk M., Christensen B. E., Bjerkan T., Ellingsen T. E., Espìn G., Ertesvåg H., Valla S..( 2008;). The Azotobacter vinelandii AlgE mannuronan C-5-epimerase family is essential for the in vivo control of alginate monomer composition and for functional cyst formation. Environ Microbiol10:1760–1770 [CrossRef][PubMed]
    [Google Scholar]
  38. Stenkamp R. E..( 1994;). Dioxygen and hemerythrin. Chem Rev94:715–726 [CrossRef]
    [Google Scholar]
  39. Tilly K., Erickson J., Sharma S., Georgopoulos C..( 1986;). Heat shock regulatory gene rpoH mRNA level increases after heat shock in Escherichia coli. J Bacteriol168:1155–1158[PubMed]
    [Google Scholar]
  40. Vayssier M., Polla B. S..( 1998;). Heat shock proteins chaperoning life and death. Cell Stress Chaperones3:221–227 [CrossRef][PubMed]
    [Google Scholar]
  41. Vela G. R..( 1974;). Survival of Azotobacter in dry soil. Appl Microbiol28:77–79[PubMed]
    [Google Scholar]
  42. Willsie J. K., Clegg J. S..( 2001;). Nuclear p26, a small heat shock/alpha-crystallin protein, and its relationship to stress resistance in Artemia franciscana embryos. J Exp Biol204:2339–2350[PubMed]
    [Google Scholar]
  43. Xiong J., Kurtz D. M. Jr, Ai J., Sanders-Loehr J..( 2000;). A hemerythrin-like domain in a bacterial chemotaxis protein. Biochemistry39:5117–5125 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.073353-0
Loading
/content/journal/micro/10.1099/mic.0.073353-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error