1887

Abstract

A large non-coding RNA, termed α-Fur, of ~1000 nt has been detected in the extreme acidophile encoded on the antisense strand to the iron-responsive master regulator (ferric uptake regulator) gene. A promoter for α was predicted bioinformatically and validated using gene fusion experiments. The promoter is situated within the coding region and in the same sense as , potentially encoding a glutamate 5-kinase. The 3′ termination site of the α transcript was determined by 3′ rapid amplification of cDNA ends to lie 7 nt downstream of the start of transcription of . Thus, α is antisense to the complete coding region of , including its predicted ribosome-binding site. The genetic context of α is conserved in several members of the genus but not in all acidophiles, indicating that it is monophyletic but not niche specific. It is hypothesized that α-Fur regulates the cellular level of Fur. This is the fourth example of an antisense RNA to , although it is the first in an extreme acidophile, and underscores the growing importance of -encoded non-coding RNAs as potential regulators involved in the microbial iron-responsive stimulon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.073171-0
2014-03-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/3/514.html?itemId=/content/journal/micro/10.1099/mic.0.073171-0&mimeType=html&fmt=ahah

References

  1. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F.. ( 2003;). Bacterial iron homeostasis. . FEMS Microbiol Rev 27:, 215–237. [CrossRef][PubMed]
    [Google Scholar]
  2. Argaman L., Hershberg R., Vogel J., Bejerano G., Wagner E. G., Margalit H., Altuvia S.. ( 2001;). Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. . Curr Biol 11:, 941–950. [CrossRef][PubMed]
    [Google Scholar]
  3. Baichoo N., Wang T., Ye R., Helmann J. D.. ( 2002;). Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. . Mol Microbiol 45:, 1613–1629. [CrossRef][PubMed]
    [Google Scholar]
  4. Bertin P. N., Heinrich-Salmeron A., Pelletier E., Goulhen-Chollet F., Arsène-Ploetze F., Gallien S., Lauga B., Casiot C., Calteau A.. & other authors ( 2011;). Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. . ISME J 5:, 1735–1747. [CrossRef][PubMed]
    [Google Scholar]
  5. Bes M. T., Hernández J. A., Peleato M. L., Fillat M. F.. ( 2001;). Cloning, overexpression and interaction of recombinant Fur from the cyanobacterium Anabaena PCC 7119 with isiB and its own promoter. . FEMS Microbiol Lett 194:, 187–192. [CrossRef][PubMed]
    [Google Scholar]
  6. Bonnefoy V., Holmes D. S.. ( 2012;). Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. . Environ Microbiol 14:, 1597–1611. [CrossRef][PubMed]
    [Google Scholar]
  7. Butcher J., Sarvan S., Brunzelle J. S., Couture J.-F., Stintzi A.. ( 2012;). Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation. . Proc Natl Acad Sci U S A 109:, 10047–10052. [CrossRef][PubMed]
    [Google Scholar]
  8. Cornelis P., Wei Q., Andrews S. C., Vinckx T.. ( 2011;). Iron homeostasis and management of oxidative stress response in bacteria. . Metallomics 3:, 540–549. [CrossRef][PubMed]
    [Google Scholar]
  9. Danielli A., Roncarati D., Delany I., Chiarini V., Rappuoli R., Scarlato V.. ( 2006;). In vivo dissection of the Helicobacter pylori Fur regulatory circuit by genome-wide location analysis. . J Bacteriol 188:, 4654–4662. [CrossRef][PubMed]
    [Google Scholar]
  10. Davis B. M., Quinones M., Pratt J., Ding Y., Waldor M. K.. ( 2005;). Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. . J Bacteriol 187:, 4005–4014. [CrossRef][PubMed]
    [Google Scholar]
  11. De Lorenzo V., Herrero M., Giovannini F., Neilands J. B.. ( 1988;). Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. . Eur J Biochem 173:, 537–546. [CrossRef][PubMed]
    [Google Scholar]
  12. De Lorenzo V., Herrero M., Jakubzik U., Timmis K. N.. ( 1990;). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. . J Bacteriol 172:, 6568–6572.[PubMed]
    [Google Scholar]
  13. Delany I., Ieva R., Alaimo C., Rappuoli R., Scarlato V.. ( 2003;). The iron-responsive regulator Fur is transcriptionally autoregulated and not essential in Neisseria meningitidis. . J Bacteriol 185:, 6032–6041. [CrossRef][PubMed]
    [Google Scholar]
  14. Denef V. J., Mueller R. S., Banfield J. F.. ( 2010;). AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. . ISME J 4:, 599–610. [CrossRef][PubMed]
    [Google Scholar]
  15. Ducey T. F., Jackson L., Orvis J., Dyer D. W.. ( 2009;). Transcript analysis of nrrF, a Fur repressed sRNA of Neisseria gonorrhoeae. . Microb Pathog 46:, 166–170. [CrossRef][PubMed]
    [Google Scholar]
  16. Egal M., Casiot C., Morin G., Parmentier M., Bruneel O., Lebrun S., Elbaz-Poulichet F.. ( 2009;). Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water. . Chem Geol 265:, 432–441. [CrossRef]
    [Google Scholar]
  17. Friedman Y. E., O’Brian M. R.. ( 2003;). A novel DNA-binding site for the ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum. . J Biol Chem 278:, 38395–38401. [CrossRef][PubMed]
    [Google Scholar]
  18. Gaballa A., Antelmann H., Aguilar C., Khakh S. K., Song K. B., Smaldone G. T., Helmann J. D.. ( 2008;). The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. . Proc Natl Acad Sci U S A 105:, 11927–11932. [CrossRef][PubMed]
    [Google Scholar]
  19. Gao H., Zhou D., Li Y., Guo Z., Han Y., Song Y., Zhai J., Du Z., Wang X.. & other authors ( 2008;). The iron-responsive Fur regulon in Yersinia pestis. . J Bacteriol 190:, 3063–3075. [CrossRef][PubMed]
    [Google Scholar]
  20. Gioia J., Highlander S. K.. ( 2007;). Identification and characterization of transcriptional regulation of the Mannheimia haemolytica ferric uptake regulator. . Vet Microbiol 124:, 298–309. [CrossRef][PubMed]
    [Google Scholar]
  21. Guacucano M., Levicán G., Holmes D., Jedlicki E.. ( 2000;). An RT-PCR artifact in the characterization of bacterial operons. . Electron J Biotechnol 3:, 213–216.
    [Google Scholar]
  22. He Z., Xiao S., Xie X., Zhong H., Hu Y., Li Q., Gao F., Li G., Liu J., Qiu G.. ( 2007;). Molecular diversity of microbial community in acid mine drainages of Yunfu sulfide mine. . Extremophiles 11:, 305–314. [CrossRef][PubMed]
    [Google Scholar]
  23. Hedrich S., Johnson D. B.. ( 2013;). Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium. . Int J Syst Evol Microbiol 63:, 4018–4025. [CrossRef][PubMed]
    [Google Scholar]
  24. Hernández J. A., Muro-Pastor A. M., Flores E., Bes M. T., Peleato M. L., Fillat M. F.. ( 2006;). Identification of a furA cis antisense RNA in the cyanobacterium Anabaena sp. PCC 7120. . J Mol Biol 355:, 325–334. [CrossRef][PubMed]
    [Google Scholar]
  25. Hernández J. A., Alonso I., Pellicer S., Luisa Peleato M., Cases R., Strasser R. J., Barja F., Fillat M. F.. ( 2010;). Mutants of Anabaena sp. PCC 7120 lacking alr1690 and alpha-furA antisense RNA show a pleiotropic phenotype and altered photosynthetic machinery. . J Plant Physiol 167:, 430–437. [CrossRef][PubMed]
    [Google Scholar]
  26. Hippe H.. ( 2000;). Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). . Int J Syst Evol Microbiol 50:, 501–503. [CrossRef][PubMed]
    [Google Scholar]
  27. Hohle T. H., O’Brian M. R.. ( 2009;). The mntH gene encodes the major Mn2+ transporter in Bradyrhizobium japonicum and is regulated by manganese via the Fur protein. . Mol Microbiol 72:, 399–409. [CrossRef][PubMed]
    [Google Scholar]
  28. Imlay J. A.. ( 2008;). Cellular defenses against superoxide and hydrogen peroxide. . Annu Rev Biochem 77:, 755–776. [CrossRef][PubMed]
    [Google Scholar]
  29. Isabella V., Wright L. F., Barth K., Spence J. M., Grogan S., Genco C. A., Clark V. L.. ( 2008;). cis- and trans-acting elements involved in regulation of norB (norZ), the gene encoding nitric oxide reductase in Neisseria gonorrhoeae. . Microbiology 154:, 226–239. [CrossRef][PubMed]
    [Google Scholar]
  30. Jones D. S., Albrecht H. L., Dawson K. S., Schaperdoth I., Freeman K. H., Pi Y., Pearson A., Macalady J. L.. ( 2012;). Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. . ISME J 6:, 158–170. [CrossRef][PubMed]
    [Google Scholar]
  31. Kammler M., Schön C., Hantke K.. ( 1993;). Characterization of the ferrous iron uptake system of Escherichia coli. . J Bacteriol 175:, 6212–6219.[PubMed]
    [Google Scholar]
  32. Leathen W., Braley S.. ( 1954;). A new iron-oxidizing bacterium: Ferrobacillus ferrooxidans. . Bacteriol Proc 1954:, 44.
    [Google Scholar]
  33. Ledala N., Pearson S. L., Wilkinson B. J., Jayaswal R. K.. ( 2007;). Molecular characterization of the Fur protein of Listeria monocytogenes. . Microbiology 153:, 1103–1111. [CrossRef][PubMed]
    [Google Scholar]
  34. Lee H. J., Park K. J., Lee A. Y., Park S. G., Park B. C., Lee K. H., Park S. J.. ( 2003;). Regulation of fur expression by RpoS and Fur in Vibrio vulnificus. . J Bacteriol 185:, 5891–5896. [CrossRef][PubMed]
    [Google Scholar]
  35. Lefimil C., Jedlicki E., Holmes D. S.. ( 2012;). An artifact in studies of gene regulation using β-galactosidase reporter gene assays. . Anal Biochem 421:, 333–335. [CrossRef][PubMed]
    [Google Scholar]
  36. Liljeqvist M., Valdés J., Holmes D. S., Dopson M.. ( 2011;). Draft genome of the psychrotolerant acidophile Acidithiobacillus ferrivorans SS3. . J Bacteriol 193:, 4304–4305. [CrossRef][PubMed]
    [Google Scholar]
  37. Liu Z., Guiliani N., Appia-Ayme C., Borne F., Ratouchniak J., Bonnefoy V.. ( 2000;). Construction and characterization of a recA mutant of Thiobacillus ferrooxidans by marker exchange mutagenesis. . J Bacteriol 182:, 2269–2276. [CrossRef][PubMed]
    [Google Scholar]
  38. López-Gomollón S., Hernández J. A., Wolk C. P., Peleato M. L., Fillat M. F.. ( 2007;). Expression of furA is modulated by NtcA and strongly enhanced in heterocysts of Anabaena sp. PCC 7120. . Microbiology 153:, 42–50. [CrossRef][PubMed]
    [Google Scholar]
  39. Lowe C. A., Asghar A. H., Shalom G., Shaw J. G., Thomas M. S.. ( 2001;). The Burkholderia cepacia fur gene: co-localization with omlA and absence of regulation by iron. . Microbiology 147:, 1303–1314.[PubMed]
    [Google Scholar]
  40. Lybecker M. C., Samuels D. S.. ( 2007;). Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. . Mol Microbiol 64:, 1075–1089. [CrossRef][PubMed]
    [Google Scholar]
  41. Majdalani N., Cunning C., Sledjeski D., Elliott T., Gottesman S.. ( 1998;). DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. . Proc Natl Acad Sci U S A 95:, 12462–12467. [CrossRef][PubMed]
    [Google Scholar]
  42. Martin-Luna B., Sevilla E., Gonzalez A., Bes M. T., Fillat M. F., Peleato M. L.. ( 2011;). Expression of fur and its antisense α-fur from Microcystis aeruginosa PCC7806 as response to light and oxidative stress. . J Plant Physiol 168:, 2244–2250. [CrossRef][PubMed]
    [Google Scholar]
  43. Massé E., Gottesman S.. ( 2002;). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. . Proc Natl Acad Sci U S A 99:, 4620–4625. [CrossRef][PubMed]
    [Google Scholar]
  44. Miller J. H.. ( 1972;). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  45. Mills S. A., Marletta M. A.. ( 2005;). Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli. . Biochemistry 44:, 13553–13559. [CrossRef][PubMed]
    [Google Scholar]
  46. Morfeldt E., Taylor D., von Gabain A., Arvidson S.. ( 1995;). Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. . EMBO J 14:, 4569–4577.[PubMed]
    [Google Scholar]
  47. Münch R., Hiller K., Grote A., Scheer M., Klein J., Schobert M., Jahn D.. ( 2005;). Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. . Bioinformatics 21:, 4187–4189. [CrossRef][PubMed]
    [Google Scholar]
  48. Nandal A., Huggins C. C., Woodhall M. R., McHugh J., Rodríguez-Quiñones F., Quail M. A., Guest J. R., Andrews S. C.. ( 2010;). Induction of the ferritin gene (ftnA) of Escherichia coli by Fe2+-Fur is mediated by reversal of H-NS silencing and is RyhB independent. . Mol Microbiol 75:, 637–657. [CrossRef][PubMed]
    [Google Scholar]
  49. Nieto P. A., Covarrubias P. C., Jedlicki E., Holmes D. S., Quatrini R.. ( 2009;). Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans. . BMC Mol Biol 10:, 63–74. [CrossRef][PubMed]
    [Google Scholar]
  50. Ochsner U. A., Wilderman P. J., Vasil A. I., Vasil M. L.. ( 2002;). GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. . Mol Microbiol 45:, 1277–1287. [CrossRef][PubMed]
    [Google Scholar]
  51. Oglesby A. G., Murphy E. R., Iyer V. R., Payne S. M.. ( 2005;). Fur regulates acid resistance in Shigella flexneri via RyhB and ydeP. . Mol Microbiol 58:, 1354–1367. [CrossRef][PubMed]
    [Google Scholar]
  52. Osorio H., Martínez V., Veloso F., Pedroso I., Valdés J., Jedlicki E., Holmes D. S., Quatrini R.. ( 2008a;). Iron homeostasis strategies in acidophilic iron oxidizers: studies in Acidithiobacillus and Leptospirillum. . Hydrometallurgy 94:, 175–179. [CrossRef]
    [Google Scholar]
  53. Osorio H., Martínez V., Nieto P. A., Holmes D. S., Quatrini R.. ( 2008b;). Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. . BMC Microbiol 8:, 203. [CrossRef][PubMed]
    [Google Scholar]
  54. Outten F. W., Wood M. J., Munoz F. M., Storz G.. ( 2003;). The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. . J Biol Chem 278:, 45713–45719. [CrossRef][PubMed]
    [Google Scholar]
  55. Pokorna B., Mandl M., Borilova S., Ceskova P., Markova R., Janiczek O.. ( 2007;). Kinetic constant variability in bacterial oxidation of elemental sulfur. . Appl Environ Microbiol 73:, 3752–3754. [CrossRef][PubMed]
    [Google Scholar]
  56. Prévost K., Salvail H., Desnoyers G., Jacques J. F., Phaneuf E., Massé E.. ( 2007;). The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. . Mol Microbiol 64:, 1260–1273. [CrossRef][PubMed]
    [Google Scholar]
  57. Quatrini R., Jedlicki E., Holmes D. S.. ( 2005a;). Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. . J Ind Microbiol Biotechnol 32:, 606–614. [CrossRef][PubMed]
    [Google Scholar]
  58. Quatrini R., Lefimil C., Holmes D. S., Jedlicki E.. ( 2005b;). The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans. . Microbiology 151:, 2005–2015. [CrossRef][PubMed]
    [Google Scholar]
  59. Quatrini R., Lefimil C., Veloso F. A., Pedroso I., Holmes D. S., Jedlicki E.. ( 2007;). Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. . Nucleic Acids Res 35:, 2153–2166. [CrossRef][PubMed]
    [Google Scholar]
  60. Quatrini R., Appia-Ayme C., Denis Y., Jedlicki E., Holmes D. S., Bonnefoy V.. ( 2009;). Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. . BMC Genomics 10:, 394. [CrossRef][PubMed]
    [Google Scholar]
  61. Rawlings D. E.. ( 2005;). Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. . Microb Cell Fact 4:, 13–28. [CrossRef][PubMed]
    [Google Scholar]
  62. Razzell W. E., Trusell P. C.. ( 1963;). Isolation and properties of an iron-oxidizing Thiobacillus. . J Bacteriol 85:, 595–603.[PubMed]
    [Google Scholar]
  63. Salvail H., Massé E.. ( 2012;). Regulating iron storage and metabolism with RNA: an overview of posttranscriptional controls of intracellular iron homeostasis. . Wiley Interdiscip Rev RNA 3:, 26–36. [CrossRef][PubMed]
    [Google Scholar]
  64. Savic D., Lazic M., Veljkovic V., Vrvic M.. ( 2005;). A kinetic model of ferrous iron oxidation by Acidithiobacillus ferrooxidans in a batch culture. . CI & CEQ 11:, 59–62. [CrossRef]
    [Google Scholar]
  65. Sevilla E., Martín-Luna B., González A., Gonzalo-Asensio J. A., Peleato M. L., Fillat M. F.. ( 2011;). Identification of three novel antisense RNAs in the fur locus from unicellular cyanobacteria. . Microbiology 157:, 3398–3404. [CrossRef][PubMed]
    [Google Scholar]
  66. Smaldone G. T., Antelmann H., Gaballa A., Helmann J. D.. ( 2012;). The FsrA sRNA and FbpB protein mediate the iron-dependent induction of the Bacillus subtilis LutABC iron-sulfur-containing oxidases. . J Bacteriol 194:, 2586–2593. [CrossRef][PubMed]
    [Google Scholar]
  67. Tomizuka N., Yagisawa M., Someya J., Takahara Y.. ( 1976;). Continuous leaching of uranium by Thiobacillus ferrooxidans. . Agric Biol Chem 40:, 1019–1025. [CrossRef]
    [Google Scholar]
  68. Valdés J., Pedroso I., Quatrini R., Dodson R. J., Tettelin H., Blake R. II, Eisen J. A., Holmes D. S.. ( 2008;). Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. . BMC Genomics 9:, 597. [CrossRef][PubMed]
    [Google Scholar]
  69. Valdés J., Ossandón F., Quatrini R., Dopson M., Holmes D. S.. ( 2011;). Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. . J Bacteriol 193:, 7003–7004. [CrossRef][PubMed]
    [Google Scholar]
  70. Vasil M. L., Ochsner U. A.. ( 1999;). The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. . Mol Microbiol 34:, 399–413. [CrossRef][PubMed]
    [Google Scholar]
  71. Watnick P. I., Eto T., Takahashi H., Calderwood S. B.. ( 1997;). Purification of Vibrio cholerae Fur and estimation of its intracellular abundance by antibody sandwich enzyme-linked immunosorbent assay. . J Bacteriol 179:, 243–247.[PubMed]
    [Google Scholar]
  72. Williams R. J.. ( 2012;). Iron in evolution. . FEBS Lett 586:, 479–484. [CrossRef][PubMed]
    [Google Scholar]
  73. Yu C., Genco C. A.. ( 2012;). Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae. . J Bacteriol 194:, 1730–1742. [CrossRef][PubMed]
    [Google Scholar]
  74. Zhang Z., Gosset G., Barabote R., Gonzalez C. S., Cuevas W. A., Saier M. H. Jr. ( 2005;). Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. . J Bacteriol 187:, 980–990. [CrossRef][PubMed]
    [Google Scholar]
  75. Zheng M., Doan B., Schneider T. D., Storz G.. ( 1999;). OxyR and SoxRS regulation of fur. . J Bacteriol 181:, 4639–4643.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.073171-0
Loading
/content/journal/micro/10.1099/mic.0.073171-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error