1887

Abstract

sp. PCC 6803 possesses only one gene, , encoding iron superoxide dismutase (FeSOD). It could not be knocked out completely by direct insertion of the kanamycin resistance cassette. When the promoter of in WT was replaced with the copper-regulated promoter P, a completely segregated P strain could be obtained. When this strain was cultured in copper-starved BG11 medium, the chlorophyll content was greatly reduced, growth was seriously inhibited and the strain was nearly dead during the 8 days of growth, whilst the WT strain grew well under the same growth conditions. These results indicated that was essential for photoautotrophic growth of . The reduction of gene copies in the genome rendered the cells more sensitive to oxidative stress produced by methyl viologen and norflurazon. still could not be knocked out completely after active expression of (encoding Cu/ZnSOD) from sp. CC9311 in the neutral site under the control of the promoter, which means the function of FeSOD could not be complemented completely by Cu/ZnSOD. Heterogeneously expressed increased the oxidation and photoinhibition tolerance of the knockdown mutant. Membrane fractionation followed by immunoblotting revealed that FeSOD was localized in the cytoplasm, and Cu/ZnSOD was localized in the soluble and thylakoid membrane fractions of the transformed . Cu/ZnSOD has a predicted N-terminal signal peptide, so it is probably a lumen protein. The different subcellular localization of these two SODs may have resulted in the failure of substitution of for

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.073080-0
2014-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/228.html?itemId=/content/journal/micro/10.1099/mic.0.073080-0&mimeType=html&fmt=ahah

References

  1. Ananyev G. , Renger G. , Wacker U. , Klimov V. . ( 1994; ). The photoproduction of superoxide radicals and the superoxide dismutase activity of Photosystem II. The possible involvement of cytochrome b559. . Photosynth Res 41:, 327–338. [CrossRef]
    [Google Scholar]
  2. Apel K. , Hirt H. . ( 2004; ). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. . Annu Rev Plant Biol 55:, 373–399. [CrossRef] [PubMed]
    [Google Scholar]
  3. Asada K. . ( 1999; ). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. . Annu Rev Plant Physiol Plant Mol Biol 50:, 601–639. [CrossRef] [PubMed]
    [Google Scholar]
  4. Asada K. . ( 2006; ). Production and scavenging of reactive oxygen species in chloroplasts and their functions. . Plant Physiol 141:, 391–396. [CrossRef] [PubMed]
    [Google Scholar]
  5. Beauchamp C. , Fridovich I. . ( 1971; ). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. . Anal Biochem 44:, 276–287. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ben-Aziz A. , Koren E. . ( 1974; ). Interference in carotenogenesis as a mechanism of action of the pyridazinone herbicide Sandoz 6706: accumulation of C-40 carotenoid precursors inhibition of β-carotene synthesis and enhancement of phytoene epoxidation. . Plant Physiol 54:, 916–920. [CrossRef] [PubMed]
    [Google Scholar]
  7. Black T. A. , Cai Y. , Wolk C. P. . ( 1993; ). Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena . . Mol Microbiol 9:, 77–84. [CrossRef] [PubMed]
    [Google Scholar]
  8. Blot N. , Mella-Flores D. , Six C. , Le Corguillé G. , Boutte C. , Peyrat A. , Monnier A. , Ratin M. , Gourvil P. . & other authors ( 2011; ). Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress. . Plant Physiol 156:, 1934–1954. [CrossRef] [PubMed]
    [Google Scholar]
  9. Campbell D. , Hurry V. , Clarke A. K. , Gustafsson P. , Oquist G. . ( 1998; ). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. . Microbiol Mol Biol Rev 62:, 667–683.[PubMed]
    [Google Scholar]
  10. Chadd H. E. , Newman J. , Mann N. H. , Carr N. G. . ( 1996; ). Identification of iron superoxide dismutase and a copper/zinc superoxide dismutase enzyme activity within the marine cyanobacterium Synechococcus sp. WH 7803. . FEMS Microbiol Lett 138:, 161–165. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dupont C. L. , Johnson D. A. , Phillippy K. , Paulsen I. T. , Brahamsha B. , Palenik B. . ( 2012; ). Genetic identification of a high-affinity Ni transporter and the transcriptional response to Ni deprivation in Synechococcus sp. strain WH8102. . Appl Environ Microbiol 78:, 7822–7832. [CrossRef] [PubMed]
    [Google Scholar]
  12. Ejima K. , Kawaharada T. , Inoue S. , Kojima K. , Nishiyama Y. . ( 2012; ). A change in the sensitivity of elongation factor G to oxidation protects photosystem II from photoinhibition in Synechocystis sp. PCC 6803. . FEBS Lett 586:, 778–783. [CrossRef] [PubMed]
    [Google Scholar]
  13. Elhai J. , Wolk C. P. . ( 1988; ). Conjugal transfer of DNA to cyanobacteria. . Methods Enzymol 167:, 747–754. [CrossRef] [PubMed]
    [Google Scholar]
  14. Fujii T. , Yokoyama E.-i. , Inoue K. , Sakurai H. . ( 1990; ). The sites of electron donation of Photosystem I to methyl viologen. . Biochim Biophys Acta 1015:, 41–48. [CrossRef]
    [Google Scholar]
  15. Helman Y. , Tchernov D. , Reinhold L. , Shibata M. , Ogawa T. , Schwarz R. , Ohad I. , Kaplan A. . ( 2003; ). Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. . Curr Biol 13:, 230–235. [CrossRef] [PubMed]
    [Google Scholar]
  16. Henmi T. , Miyao M. , Yamamoto Y. . ( 2004; ). Release and reactive-oxygen-mediated damage of the oxygen-evolving complex subunits of PSII during photoinhibition. . Plant Cell Physiol 45:, 243–250. [CrossRef] [PubMed]
    [Google Scholar]
  17. Herbert S. K. , Samson G. , Fork D. C. , Laudenbach D. E. . ( 1992; ). Characterization of damage to photosystems I and II in a cyanobacterium lacking detectable iron superoxide dismutase activity. . Proc Natl Acad Sci U S A 89:, 8716–8720. [CrossRef] [PubMed]
    [Google Scholar]
  18. Huang F. , Parmryd I. , Nilsson F. , Persson A. L. , Pakrasi H. B. , Andersson B. , Norling B. . ( 2002; ). Proteomics of Synechocystis sp. strain PCC 6803: identification of plasma membrane proteins. . Mol Cell Proteomics 1:, 956–966. [CrossRef] [PubMed]
    [Google Scholar]
  19. Imlay J. A. . ( 2013; ). The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. . Nat Rev Microbiol 11:, 443–454. [CrossRef] [PubMed]
    [Google Scholar]
  20. Jiang H. B. , Lou W. J. , Du H. Y. , Price N. M. , Qiu B. S. . ( 2012; ). Sll1263, a unique cation diffusion facilitator protein that promotes iron uptake in the cyanobacterium Synechocystis sp. Strain PCC 6803. . Plant Cell Physiol 53:, 1404–1417. [CrossRef] [PubMed]
    [Google Scholar]
  21. Jordan P. , Fromme P. , Witt H. T. , Klukas O. , Saenger W. , Krauss N. . ( 2001; ). Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. . Nature 411:, 909–917. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kaneko T. , Sato S. , Kotani H. , Tanaka A. , Asamizu E. , Nakamura Y. , Miyajima N. , Hirosawa M. , Sugiura M. . & other authors ( 1996; ). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. . DNA Res 3:, 109–136. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kim J. H. , Suh K. H. . ( 2005; ). Light-dependent expression of superoxide dismutase from cyanobacterium Synechocystis sp. strain PCC 6803. . Arch Microbiol 183:, 218–223. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kojima K. , Oshita M. , Nanjo Y. , Kasai K. , Tozawa Y. , Hayashi H. , Nishiyama Y. . ( 2007; ). Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II. . Mol Microbiol 65:, 936–947. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kümmel H. W. , Grimme L. H. . ( 1975; ). The inhibition of carotenoid biosynthesis in green algae by Sandoz H 6706: accumulation of phytoene and phytofluene in Chlorella fusca . . Z Naturforsch C 30c:, 333–336.
    [Google Scholar]
  26. Labarre J. , Chauvat F. , Thuriaux P. . ( 1989; ). Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803. . J Bacteriol 171:, 3449–3457.[PubMed]
    [Google Scholar]
  27. Lancaster V. L. , LoBrutto R. , Selvaraj F. M. , Blankenship R. E. . ( 2004; ). A cambialistic superoxide dismutase in the thermophilic photosynthetic bacterium Chloroflexus aurantiacus . . J Bacteriol 186:, 3408–3414. [CrossRef] [PubMed]
    [Google Scholar]
  28. Latifi A. , Ruiz M. , Zhang C. C. . ( 2009; ). Oxidative stress in cyanobacteria. . FEMS Microbiol Rev 33:, 258–278. [CrossRef] [PubMed]
    [Google Scholar]
  29. Li T. , Huang X. , Zhou R. B. , Liu Y. F. , Li B. , Nomura C. , Zhao J. D. . ( 2002; ). Differential expression and localization of Mn and Fe superoxide dismutases in the heterocystous cyanobacterium Anabaena sp. strain PCC 7120. . J Bacteriol 184:, 5096–5103. [CrossRef] [PubMed]
    [Google Scholar]
  30. Lichtenthaler H. K. , Buschmann C. . ( 2001; ). Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. . In Current Protocols in Food Analytical Chemistry, pp. F4.3.1–F4.3.8. Edited by Wrolstad R. E. . . Chichester:: Wiley;. [CrossRef]
    [Google Scholar]
  31. Martínez-Férez I. M. , Vioque A. . ( 1992; ). Nucleotide sequence of the phytoene desaturase gene from Synechocystis sp. PCC 6803 and characterization of a new mutation which confers resistance to the herbicide norflurazon. . Plant Mol Biol 18:, 981–983. [CrossRef] [PubMed]
    [Google Scholar]
  32. McCord J. M. , Fridovich I. . ( 1969; ). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). . J Biol Chem 244:, 6049–6055.[PubMed]
    [Google Scholar]
  33. Mehler A. H. . ( 1951; ). Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. . Arch Biochem Biophys 33:, 65–77. [CrossRef] [PubMed]
    [Google Scholar]
  34. Miller A. F. . ( 2004; ). Superoxide dismutases: active sites that save, but a protein that kills. . Curr Opin Chem Biol 8:, 162–168. [CrossRef] [PubMed]
    [Google Scholar]
  35. Myouga F. , Hosoda C. , Umezawa T. , Iizumi H. , Kuromori T. , Motohashi R. , Shono Y. , Nagata N. , Ikeuchi M. , Shinozaki K. . ( 2008; ). A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. . Plant Cell 20:, 3148–3162. [CrossRef] [PubMed]
    [Google Scholar]
  36. Nefedova L. N. , Mel’nik V. A. , Babykin M. M. . ( 2003; ). Mutants of cyanobacterium Synechocystis sp. PCC 6803 with insertional inactivation of the sodB gene encoding Fe-superoxide dismutase. . Russ J Genet 39:, 386–389. [CrossRef]
    [Google Scholar]
  37. Nishiyama Y. , Yamamoto H. , Allakhverdiev S. I. , Inaba M. , Yokota A. , Murata N. . ( 2001; ). Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. . EMBO J 20:, 5587–5594. [CrossRef] [PubMed]
    [Google Scholar]
  38. Nishiyama Y. , Allakhverdiev S. I. , Yamamoto H. , Hayashi H. , Murata N. . ( 2004; ). Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. . Biochemistry 43:, 11321–11330. [CrossRef] [PubMed]
    [Google Scholar]
  39. Nishiyama Y. , Allakhverdiev S. I. , Murata N. . ( 2006; ). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. . Biochim Biophys Acta 1757:, 742–749. [CrossRef] [PubMed]
    [Google Scholar]
  40. Ogawa K. , Kanematsu S. , Takabe K. , Asada S. . ( 1995; ). Attachment of Cu/Zn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: detection by immunogold labeling after rapid freezing and substitution method. . Plant Cell Physiol 36:, 565–573.
    [Google Scholar]
  41. Palenik B. , Brahamsha B. , Larimer F. W. , Land M. , Hauser L. , Chain P. , Lamerdin J. , Regala W. , Allen E. E. . & other authors ( 2003; ). The genome of a motile marine Synechococcus . . Nature 424:, 1037–1042. [CrossRef] [PubMed]
    [Google Scholar]
  42. Palenik B. , Ren Q. H. , Dupont C. L. , Myers G. S. , Heidelberg J. F. , Badger J. H. , Madupu R. , Nelson W. C. , Brinkac L. M. . & other authors ( 2006; ). Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment. . Proc Natl Acad Sci U S A 103:, 13555–13559. [CrossRef] [PubMed]
    [Google Scholar]
  43. Polle A. . ( 2001; ). Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. . Plant Physiol 126:, 445–462. [CrossRef] [PubMed]
    [Google Scholar]
  44. Priya B. , Premanandh J. , Dhanalakshmi R. T. , Seethalakshmi T. , Uma L. , Prabaharan D. , Subramanian G. . ( 2007; ). Comparative analysis of cyanobacterial superoxide dismutases to discriminate canonical forms. . BMC Genomics 8:, 435–445. [CrossRef] [PubMed]
    [Google Scholar]
  45. Raghavan P. S. , Rajaram H. , Apte S. K. . ( 2011; ). Nitrogen status dependent oxidative stress tolerance conferred by overexpression of MnSOD and FeSOD proteins in Anabaena sp. strain PCC7120. . Plant Mol Biol 77:, 407–417. [CrossRef] [PubMed]
    [Google Scholar]
  46. Regelsberger G. , Jakopitsch C. , Plasser L. , Schwaiger H. , Furtmüller P. G. , Peschek G. A. , Zamocky M. , Obinger C. . ( 2002; ). Occurrence and biochemistry of hydroperoxidases in oxygenic phototrophic prokaryotes (cyanobacteria). . Plant Physiol Biochem 40:, 479–490. [CrossRef]
    [Google Scholar]
  47. Regelsberger G. , Laaha U. , Dietmann D. , Rüker F. , Canini A. , Grilli-Caiola M. , Furtmüller P. G. , Jakopitsch C. , Peschek G. A. , Obinger C. . ( 2004; ). The iron superoxide dismutase from the filamentous cyanobacterium Nostoc PCC 7120. Localization, overexpression, and biochemical characterization. . J Biol Chem 279:, 44384–44393. [CrossRef] [PubMed]
    [Google Scholar]
  48. Richter M. , Rühle W. , Wild A. . ( 1990; ). Studies on the mechanism of photosystem II photoinhibition II. The involvement of toxic oxygen species. . Photosynth Res 24:, 237–243. [CrossRef]
    [Google Scholar]
  49. Rusch D. B. , Martiny A. C. , Dupont C. L. , Halpern A. L. , Venter J. C. . ( 2010; ). Characterization of Prochlorococcus clades from iron-depleted oceanic regions. . Proc Natl Acad Sci U S A 107:, 16184–16189. [CrossRef] [PubMed]
    [Google Scholar]
  50. Schreiber U. , Endo T. , Mi H. , Asada K. . ( 1995; ). Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. . Plant Cell Physiol 36:, 873–882.
    [Google Scholar]
  51. Shen G. Z. , Boussiba S. , Vermaasa W. F. J. . ( 1993; ). Synechocystis sp PCC 6803 strains lacking photosystem I and phycobilisome function. . Plant Cell 5:, 1853–1863.[PubMed] [CrossRef]
    [Google Scholar]
  52. Song Y. G. , Liu B. , Wang L. F. , Li M. H. , Liu Y. . ( 2006; ). Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photoinhibition of photosystem II. . Photosynth Res 90:, 67–78. [CrossRef] [PubMed]
    [Google Scholar]
  53. Srivastava R. , Pisareva T. , Norling B. . ( 2005; ). Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. . Proteomics 5:, 4905–4916. [CrossRef] [PubMed]
    [Google Scholar]
  54. Takahashi M. A. , Asada K. . ( 1983; ). Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. . Arch Biochem Biophys 226:, 558–566. [CrossRef] [PubMed]
    [Google Scholar]
  55. Thomas D. J. , Avenson T. J. , Thomas J. B. , Herbert S. K. . ( 1998; ). A cyanobacterium lacking iron superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but is not sensitized to oxidative stress induced with norflurazon. . Plant Physiol 116:, 1593–1602. [CrossRef] [PubMed]
    [Google Scholar]
  56. Tjus S. E. , Scheller H. V. , Andersson B. , Møller B. L. . ( 2001; ). Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I, but also to photosystem II. . Plant Physiol 125:, 2007–2015. [CrossRef] [PubMed]
    [Google Scholar]
  57. Valko M. , Leibfritz D. , Moncol J. , Cronin M. T. D. , Mazur M. , Telser J. . ( 2007; ). Free radicals and antioxidants in normal physiological functions and human disease. . Int J Biochem Cell Biol 39:, 44–84. [CrossRef] [PubMed]
    [Google Scholar]
  58. Waterbury J. B. , Willey J. M. . ( 1988; ). Isolation and growth of marine planktonic cyanobacteria. . Methods Enzymol 167:, 100–105. [CrossRef]
    [Google Scholar]
  59. Williams J. G. K. . ( 1988; ). Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. . Methods Enzymol 167:, 766–778. [CrossRef]
    [Google Scholar]
  60. Wolfe-Simon F. , Grzebyk D. , Schofield O. , Falkowski P. G. . ( 2005; ). The role and evolution of superoxide dismutases in algae. . J Phycol 41:, 453–465. [CrossRef]
    [Google Scholar]
  61. Yang Y. , Yin C. T. , Li W. Z. , Xu X. D. . ( 2008; ). α-tocopherol is essential for acquired chill-light tolerance in the cyanobacterium Synechocystis sp. strain PCC 6803. . J Bacteriol 190:, 1554–1560. [CrossRef] [PubMed]
    [Google Scholar]
  62. Zhang L. , McSpadden B. , Pakrasi H. B. , Whitmarsh J. . ( 1992; ). Copper-mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium Synechocystis 6803. . J Biol Chem 267:, 19054–19059.[PubMed]
    [Google Scholar]
  63. Zhang Y. , Ding S. H. , Lu Q. T. , Yang Z. P. , Wen X. G. , Zhang L. X. , Lu C. M. . ( 2011; ). Characterization of photosystem II in transgenic tobacco plants with decreased iron superoxide dismutase. . Biochim Biophys Acta 1807:, 391–403. [CrossRef] [PubMed]
    [Google Scholar]
  64. Zhao W. X. , Guo Q. X. , Zhao J. D. . ( 2007; ). A membrane-associated Mn-superoxide dismutase protects the photosynthetic apparatus and nitrogenase from oxidative damage in the cyanobacterium Anabaena sp. PCC 7120. . Plant Cell Physiol 48:, 563–572. [CrossRef] [PubMed]
    [Google Scholar]
  65. Zouni A. , Witt H. T. , Kern J. , Fromme P. , Krauss N. , Saenger W. , Orth P. . ( 2001; ). Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. . Nature 409:, 739–743. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.073080-0
Loading
/content/journal/micro/10.1099/mic.0.073080-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error