1887

Abstract

Brucellosis caused by species is a zoonotic disease with a serious impact on public health and the livestock industry. To better understand the pathogenesis of the disease, -induced antigen technology (IVIAT) was used to investigate the -induced antigens of in this study. A genomic expression library of was constructed and screened using pooled bovine -positive sera by IVIAT. In total, 33 antigens were identified. Five antigens were further expressed and tested for their seroreactivity against 33 individual bovine -positive sera by Western blot analysis. The results showed a highest positive rate of 32/33 for argininosuccinate lyase (ASL), indicating that ASL may be used as a candidate marker for serodiagnosis of brucellosis. Furthermore, an gene-deleted mutant strain S2308ΔASL was constructed, and the intracellular survival and replication of the mutant strain in RAW264.7 cells were investigated. Interestingly, the numbers of bacteria recovered from cells infected with mutant strain S2308ΔASL were similar at all time points observed from 0 h to 96 h post-infection, suggesting the gene plays an important role in the bacterial replication in RAW264.7 cells. Real-time quantitative PCR (qPCR) analysis showed that the mRNA levels in S2308ΔASL were decreased for and when compared with those in S2308 (<). Our results not only expand the knowledge of intracellular replication but also expand the list of candidates for serodiagnostic markers of brucellosis.

Funding
This study was supported by the:
  • Chinese National Programs for Fundamental Research and Development (Award 2010CB530202)
  • Chinese Academy of Agricultural Sciences (Award 2013JB04)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.072926-0
2014-03-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/3/567.html?itemId=/content/journal/micro/10.1099/mic.0.072926-0&mimeType=html&fmt=ahah

References

  1. Al Dahouk S., Scholz H. C., Tomaso H., Bahn P., Göllner C., Karges W., Appel B., Hensel A., Neubauer H., Nöckler K. ( 2010). Differential phenotyping of Brucella species using a newly developed semi-automated metabolic system. BMC Microbiol 10:269 [View Article][PubMed]
    [Google Scholar]
  2. Barbier T., Nicolas C., Letesson J. J. ( 2011). Brucella adaptation and survival at the crossroad of metabolism and virulence. FEBS Lett 585:2929–2934 [View Article][PubMed]
    [Google Scholar]
  3. Boschiroli M. L., Ouahrani-Bettache S., Foulongne V., Michaux-Charachon S., Bourg G., Allardet-Servent A., Cazevieille C., Liautard J. P., Ramuz M., O’Callaghan D. ( 2002). The Brucella suis virB operon is induced intracellularly in macrophages. Proc Natl Acad Sci U S A 99:1544–1549 [View Article][PubMed]
    [Google Scholar]
  4. Celli J. ( 2006). Surviving inside a macrophage: the many ways of Brucella. Res Microbiol 157:93–98 [View Article][PubMed]
    [Google Scholar]
  5. de Jong M. F., Starr T., Winter M. G., den Hartigh A. B., Child R., Knodler L. A., van Dijl J. M., Celli J., Tsolis R. M. ( 2013). Sensing of bacterial type IV secretion via the unfolded protein response. MBio 4:e00418-e12 [View Article][PubMed]
    [Google Scholar]
  6. Gest H. ( 1987). Evolutionary roots of the citric acid cycle in prokaryotes. Biochem Soc Symp 54:3–16[PubMed]
    [Google Scholar]
  7. Gu H., Zhu H., Lu C. ( 2009). Use of in vivo-induced antigen technology (IVIAT) for the identification of Streptococcus suis serotype 2 in vivo-induced bacterial protein antigens. BMC Microbiol 9:201 [View Article][PubMed]
    [Google Scholar]
  8. Haines R. J., Pendleton L. C., Eichler D. C. ( 2011). Argininosuccinate synthase: at the center of arginine metabolism. Int J Biochem Mol Biol 2:8–23[PubMed]
    [Google Scholar]
  9. Han X., Ding C., Chen H., Hu Q., Yu S. ( 2012). Enzymatic and biological characteristics of enolase in Brucella abortus A19. Mol Biol Rep 39:2705–2711 [View Article][PubMed]
    [Google Scholar]
  10. Han X., Bai H., Liu L., Dong H., Liu R., Song J., Ding C., Qi K., Liu H., Yu S. ( 2013). The luxS gene functions in the pathogenesis of avian pathogenic Escherichia coli. Microb Pathog 55:21–27 [View Article][PubMed]
    [Google Scholar]
  11. Hang L., John M., Asaduzzaman M., Bridges E. A., Vanderspurt C., Kirn T. J., Taylor R. K., Hillman J. D., Progulske-Fox A. & other authors ( 2003). Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc Natl Acad Sci U S A 100:8508–8513 [View Article][PubMed]
    [Google Scholar]
  12. Harris J. B., Baresch-Bernal A., Rollins S. M., Alam A., LaRocque R. C., Bikowski M., Peppercorn A. F., Handfield M., Hillman J. D. & other authors ( 2006). Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi. Infect Immun 74:5161–5168 [View Article][PubMed]
    [Google Scholar]
  13. Kumar M., Khan F. G., Sharma S., Kumar R., Faujdar J., Sharma R., Chauhan D. S., Singh R., Magotra S. K., Khan I. A. ( 2011). Identification of Mycobacterium tuberculosis genes preferentially expressed during human infection. Microb Pathog 50:31–38 [View Article][PubMed]
    [Google Scholar]
  14. Lowry J. E., Goodridge L., Vernati G., Fluegel A. M., Edwards W. H., Andrews G. P. ( 2010). Identification of Brucella abortus genes in elk (Cervus elaphus) using in vivo-induced antigen technology (IVIAT) reveals novel markers of infection. Vet Microbiol 142:367–372 [View Article][PubMed]
    [Google Scholar]
  15. Manterola L., Guzmán-Verri C., Chaves-Olarte E., Barquero-Calvo E., de Miguel M. J., Moriyón I., Grilló M. J., López-Goñi I., Moreno E. ( 2007). BvrR/BvrS-controlled outer membrane proteins Omp3a and Omp3b are not essential for Brucella abortus virulence. Infect Immun 75:4867–4874 [View Article][PubMed]
    [Google Scholar]
  16. Martínez-Núñez C., Altamirano-Silva P., Alvarado-Guillén F., Moreno E., Guzmán-Verri C., Chaves-Olarte E. ( 2010). The two-component system BvrR/BvrS regulates the expression of the type IV secretion system VirB in Brucella abortus. J Bacteriol 192:5603–5608 [View Article][PubMed]
    [Google Scholar]
  17. Muñoz P. M., Marín C. M., Monreal D., González D., Garin-Bastuji B., Díaz R., Mainar-Jaime R. C., Moriyón I., Blasco J. M. ( 2005). Efficacy of several serological tests and antigens for diagnosis of bovine brucellosis in the presence of false-positive serological results due to Yersinia enterocolitica O:9. Clin Diagn Lab Immunol 12:141–151[PubMed]
    [Google Scholar]
  18. Olsen S., Tatum F. ( 2010). Bovine brucellosis. Vet Clin North Am Food Anim Pract 26:15–27 [View Article][PubMed]
    [Google Scholar]
  19. Peuscher R., Dijsselhof M. E., Abeling N. G., Van Rijn M., Van Spronsen F. J., Bosch A. M. ( 2012). The ketogenic diet is well tolerated and can be effective in patients with argininosuccinate lyase deficiency and refractory epilepsy. JIMD Rep 5:127–130 [View Article][PubMed]
    [Google Scholar]
  20. Rollins S. M., Peppercorn A., Hang L., Hillman J. D., Calderwood S. B., Handfield M., Ryan E. T. ( 2005). In vivo induced antigen technology (IVIAT). Cell Microbiol 7:1–9 [View Article][PubMed]
    [Google Scholar]
  21. Rollins S. M., Peppercorn A., Young J. S., Drysdale M., Baresch A., Bikowski M. V., Ashford D. A., Quinn C. P., Handfield M. & other authors ( 2008). Application of in vivo induced antigen technology (IVIAT) to Bacillus anthracis. PLoS ONE 3:e1824 [View Article][PubMed]
    [Google Scholar]
  22. Roux C. M., Rolán H. G., Santos R. L., Beremand P. D., Thomas T. L., Adams L. G., Tsolis R. M. ( 2007). Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice. Cell Microbiol 9:1851–1869 [View Article][PubMed]
    [Google Scholar]
  23. Sambrook J., Russell D. W. ( 2011). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  24. Seleem M. N., Boyle S. M., Sriranganathan N. ( 2008). Brucella: a pathogen without classic virulence genes. Vet Microbiol 129:1–14 [View Article][PubMed]
    [Google Scholar]
  25. Syed N., Langer J., Janczar K., Singh P., Lo Nigro C., Lattanzio L., Coley H. M., Hatzimichael E., Bomalaski J. & other authors ( 2013). Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma. Cell Death Dis 4:e458 [View Article][PubMed]
    [Google Scholar]
  26. Viadas C., Rodríguez M. C., Sangari F. J., Gorvel J. P., García-Lobo J. M., López-Goñi I. ( 2010). Transcriptome analysis of the Brucella abortus BvrR/BvrS two-component regulatory system. PLoS ONE 5:e10216 [View Article][PubMed]
    [Google Scholar]
  27. Zhang M., Han X., Liu H., Tian M., Ding C., Song J., Sun X., Liu Z., Yu S. ( 2013). Inactivation of the ABC transporter ATPase gene in Brucella abortus strain 2308 attenuated the virulence of the bacteria. Vet Microbiol 164:322–329 [View Article][PubMed]
    [Google Scholar]
  28. Zygmunt M. S., Hagius S. D., Walker J. V., Elzer P. H. ( 2006). Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host. Microbes Infect 8:2849–2854 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.072926-0
Loading
/content/journal/micro/10.1099/mic.0.072926-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error