1887

Abstract

, the primary aetiological agent of dental caries, possesses an YjeE-like protein that is encoded by locus SMU.409, herein designated In this study, a BrpB-deficient mutant, JB409, and a double mutant deficient of BrpB and BrpA (a paralogue of the LytR–CpsA–Psr family of cell wall-associated proteins), JB819, were constructed and characterized using function assays and microscopy analysis. Both JB409 and JB819 displayed extended lag phases and drastically slowed growth rates during growth in brain heart infusion medium as compared to the wild-type, UA159. Relative to UA159, JB409 and JB819 were more than 60- and 10-fold more susceptible to acid killing at pH 2.8, and more than 1 and 2 logs more susceptible to hydrogen peroxide, respectively. Complementation of the deficient mutants with a wild-type copy of the respective gene(s) partly restored the acid and oxidative stress responses to a level similar to the wild-type. As compared to UA159, biofilm formation by JB409 and JB819 was drastically reduced (<0.001), especially during growth in medium containing sucrose. Under a scanning electron microscope, JB409 had significantly more giant cells with an elongated, rod-like morphology, and JB819 formed marble-like super cells with apparent defects in cell division. As revealed by transmission electron microscopy analysis, BrpB deficiency in both JB409 and JB819 resulted in the development of low electron density patches and formation of a loose nucleoid structure. Taken together, these results suggest that BrpB likely functions together with BrpA in regulating cell envelope biogenesis/homeostasis in . Further studies are under way to elucidate the mechanism that underlies the BrpA- and BrpB-mediated regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.072884-0
2014-01-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/67.html?itemId=/content/journal/micro/10.1099/mic.0.072884-0&mimeType=html&fmt=ahah

References

  1. Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S.. & other authors ( 2002;). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. . Proc Natl Acad Sci U S A 99:, 14434–14439. [CrossRef][PubMed]
    [Google Scholar]
  2. Allali-Hassani A., Campbell T. L., Ho A., Schertzer J. W., Brown E. D.. ( 2004;). Probing the active site of YjeE: a vital Escherichia coli protein of unknown function. . Biochem J 384:, 577–584. [CrossRef][PubMed]
    [Google Scholar]
  3. Bitoun J. P., Nguyen A. H., Fan Y., Burne R. A., Wen Z. T.. ( 2011;). Transcriptional repressor Rex is involved in regulation of oxidative stress response and biofilm formation by Streptococcus mutans.. FEMS Microbiol Lett 320:, 110–117. [CrossRef][PubMed]
    [Google Scholar]
  4. Bitoun J. P., Liao S., Yao X., Ahn S. J., Isoda R., Nguyen A. H., Brady L. J., Burne R. A., Abranches J., Wen Z. T.. ( 2012a;). BrpA is involved in regulation of cell envelope stress responses in Streptococcus mutans.. Appl Environ Microbiol 78:, 2914–2922. [CrossRef][PubMed]
    [Google Scholar]
  5. Bitoun J. P., Liao S., Yao X., Xie G. G., Wen Z. T.. ( 2012b;). The redox-sensing regulator Rex modulates central carbon metabolism, stress tolerance response and biofilm formation by Streptococcus mutans.. PLoS ONE 7:, e44766. [CrossRef][PubMed]
    [Google Scholar]
  6. Bitoun J. P., Liao S., McKey B. A., Yao X., Fan Y., Abranches J., Beatty W. L., Wen Z. T.. ( 2013;). Psr is involved in regulation of glucan production, and double deficiency of BrpA and Psr is lethal in Streptococcus mutans.. Microbiology 159:, 493–506. [CrossRef][PubMed]
    [Google Scholar]
  7. Burne R. A.. ( 1998;). Oral streptococci... products of their environment. . J Dent Res 77:, 445–452. [CrossRef][PubMed]
    [Google Scholar]
  8. Chatfield C. H., Koo H., Quivey R. G. Jr. ( 2005;). The putative autolysin regulator LytR in Streptococcus mutans plays a role in cell division and is growth-phase regulated. . Microbiology 151:, 625–631. [CrossRef][PubMed]
    [Google Scholar]
  9. Deutsch C., El Yacoubi B., de Crécy-Lagard V., Iwata-Reuyl D.. ( 2012;). Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. . J Biol Chem 287:, 13666–13673. [CrossRef][PubMed]
    [Google Scholar]
  10. Eberhardt A., Hoyland C. N., Vollmer D., Bisle S., Cleverley R. M., Johnsborg O., Håvarstein L. S., Lewis R. J., Vollmer W.. ( 2012;). Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae.. Microb Drug Resist 18:, 240–255. [CrossRef][PubMed]
    [Google Scholar]
  11. Handford J. I., Ize B., Buchanan G., Butland G. P., Greenblatt J., Emili A., Palmer T.. ( 2009;). Conserved network of proteins essential for bacterial viability. . J Bacteriol 191:, 4732–4749. [CrossRef][PubMed]
    [Google Scholar]
  12. Hanson P. I., Whiteheart S. W.. ( 2005;). AAA+ proteins: have engine, will work. . Nat Rev Mol Cell Biol 6:, 519–529. [CrossRef][PubMed]
    [Google Scholar]
  13. Hanson B. R., Lowe B. A., Neely M. N.. ( 2011;). Membrane topology and DNA-binding ability of the streptococcal CpsA protein. . J Bacteriol 193:, 411–420. [CrossRef][PubMed]
    [Google Scholar]
  14. Hanson B. R., Runft D. L., Streeter C., Kumar A., Carion T. W., Neely M. N.. ( 2012;). Functional analysis of the CpsA protein of Streptococcus agalactiae.. J Bacteriol 194:, 1668–1678. [CrossRef][PubMed]
    [Google Scholar]
  15. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersbøll B. K., Molin S.. ( 2000;). Quantification of biofilm structures by the novel computer program comstat. . Microbiology 146:, 2395–2407.[PubMed]
    [Google Scholar]
  16. Hübscher J., Lüthy L., Berger-Bächi B., Stutzmann Meier P.. ( 2008;). Phylogenetic distribution and membrane topology of the LytR-CpsA-Psr protein family. . BMC Genomics 9:, 617. [CrossRef][PubMed]
    [Google Scholar]
  17. Johnsborg O., Håvarstein L. S.. ( 2009;). Pneumococcal LytR, a protein from the LytR-CpsA-Psr family, is essential for normal septum formation in Streptococcus pneumoniae.. J Bacteriol 191:, 5859–5864. [CrossRef][PubMed]
    [Google Scholar]
  18. Karst J. C., Foucher A.-E., Campbell T. L., Di Guilmi A.-M., Stroebel D., Mangat C. S., Brown E. D., Jault J.-M.. ( 2009;). The ATPase activity of an ‘essential’ Bacillus subtilis enzyme, YdiB, is required for its cellular function and is modulated by oligomerization. . Microbiology 155:, 944–956. [CrossRef][PubMed]
    [Google Scholar]
  19. Kawai Y., Marles-Wright J., Cleverley R. M., Emmins R., Ishikawa S., Kuwano M., Heinz N., Bui N. K., Hoyland C. N.. & other authors ( 2011;). A widespread family of bacterial cell wall assembly proteins. . EMBO J 30:, 4931–4941. [CrossRef][PubMed]
    [Google Scholar]
  20. Lau P. C. Y., Sung C. K., Lee J. H., Morrison D. A., Cvitkovitch D. G.. ( 2002;). PCR ligation mutagenesis in transformable streptococci: application and efficiency. . J Microbiol Methods 49:, 193–205. [CrossRef][PubMed]
    [Google Scholar]
  21. Lazarevic V., Margot P., Soldo B., Karamata D.. ( 1992;). Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-l-alanine amidase and its modifier. . J Gen Microbiol 138:, 1949–1961. [CrossRef][PubMed]
    [Google Scholar]
  22. LeBlanc D., Lee L.. ( 1991;). Replication function of pVA380-1.. In Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci, pp. 235–239. Edited by Dunny G., Cleary P. P., Mckay L. L... Washington, DC:: ASM Press;. [CrossRef][PubMed]
    [Google Scholar]
  23. Lemos J. A., Burne R. A.. ( 2008;). A model of efficiency: stress tolerance by Streptococcus mutans.. Microbiology 154:, 3247–3255. [CrossRef][PubMed]
    [Google Scholar]
  24. Lemos J. A., Abranches J., Koo H., Marquis R. E., Burne R. A.. ( 2010;). Protocols to study the physiology of oral biofilms. . Methods Mol Biol 666:, 87–102. [CrossRef][PubMed]
    [Google Scholar]
  25. Li Y. H., Lau P. C., Lee J. H., Ellen R. P., Cvitkovitch D. G.. ( 2001;). Natural genetic transformation of Streptococcus mutans growing in biofilms. . J Bacteriol 183:, 897–908. [CrossRef][PubMed]
    [Google Scholar]
  26. Li Y. H., Lau P. C., Tang N., Svensäter G., Ellen R. P., Cvitkovitch D. G.. ( 2002;). Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans.. J Bacteriol 184:, 6333–6342. [CrossRef][PubMed]
    [Google Scholar]
  27. Loesche W. J.. ( 1986;). Role of Streptococcus mutans in human dental decay. . Microbiol Rev 50:, 353–380.[PubMed]
    [Google Scholar]
  28. Loo C. Y., Corliss D. A., Ganeshkumar N.. ( 2000;). Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. . J Bacteriol 182:, 1374–1382. [CrossRef][PubMed]
    [Google Scholar]
  29. Nichols C. E., Lamb H. K., Thompson P., El Omari K., Lockyer M., Charles I., Hawkins A. R., Stammers D. K.. ( 2013;). Crystal structure of the dimer of two essential Salmonella typhimurium proteins, YgjD & YeaZ and calorimetric evidence for the formation of a ternary YgjD–YeaZ–YjeE complex. . Protein Sci 22:, 628–640. [CrossRef][PubMed]
    [Google Scholar]
  30. Over B., Heusser R., McCallum N., Schulthess B., Kupferschmied P., Gaiani J. M., Sifri C. D., Berger-Bächi B., Stutzmann Meier P.. ( 2011;). LytR-CpsA-Psr proteins in Staphylococcus aureus display partial functional redundancy and the deletion of all three severely impairs septum placement and cell separation. . FEMS Microbiol Lett 320:, 142–151. [CrossRef][PubMed]
    [Google Scholar]
  31. Schrecke K., Jordan S., Mascher T.. ( 2013;). Stoichiometry and perturbation studies of the LiaFSR system of Bacillus subtilis.. Mol Microbiol 87:, 769–788. [CrossRef][PubMed]
    [Google Scholar]
  32. Teplyakov A., Obmolova G., Tordova M., Thanki N., Bonander N., Eisenstein E., Howard A. J., Gilliland G. L.. ( 2002;). Crystal structure of the YjeE protein from Haemophilus influenzae: a putative ATPase involved in cell wall synthesis. . Proteins 48:, 220–226. [CrossRef][PubMed]
    [Google Scholar]
  33. Wen Z. T., Burne R. A.. ( 2002;). Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans.. Appl Environ Microbiol 68:, 1196–1203. [CrossRef][PubMed]
    [Google Scholar]
  34. Wen Z. T., Burne R. A.. ( 2004;). LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. . J Bacteriol 186:, 2682–2691. [CrossRef][PubMed]
    [Google Scholar]
  35. Wen Z. T., Baker H. V., Burne R. A.. ( 2006;). Influence of BrpA on critical virulence attributes of Streptococcus mutans.. J Bacteriol 188:, 2983–2992. [CrossRef][PubMed]
    [Google Scholar]
  36. Wen Z. T., Yates D., Ahn S. J., Burne R. A.. ( 2010;). Biofilm formation and virulence expression by Streptococcus mutans are altered when grown in dual-species model. . BMC Microbiol 10:, 111. [CrossRef][PubMed]
    [Google Scholar]
  37. Wen Z. T., Nguyen A. H., Bitoun J. P., Abranches J., Baker H. V., Burne R. A.. ( 2011;). Transcriptome analysis of LuxS-deficient Streptococcus mutans grown in biofilms. . Mol Oral Microbiol 26:, 2–18. [CrossRef][PubMed]
    [Google Scholar]
  38. Zeng L., Wen Z. T., Burne R. A.. ( 2006;). A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans.. Mol Microbiol 62:, 187–200. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.072884-0
Loading
/content/journal/micro/10.1099/mic.0.072884-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error