1887

Abstract

is the most common cause of enteric disease and presents a major burden on healthcare systems globally due in part to the observed rapid rise in antibiotic resistance. The ability of to form endospores is a key feature in the organism’s pathogenesis and transmission, and contributes greatly to its resilient nature. Endospores are highly resistant to disinfection, allowing them to persist on hospital surfaces. In order for the organism to cause disease, the spores must germinate and revert to a vegetative form. While spore germination in spp. is well understood, very little is known about this process in . Here we report the characterization of SleC (CD0551) from 630. Bioinformatic analysis of SleC indicated a multi-domained protein possessing a peptidoglycan-binding (PGB) domain, a SpoIID/LytB domain and an undefined N-terminal region. We have confirmed that SleC is an exo-acting lytic transglycosylase with the catalytic activity localized to the N-terminal region. Additionally, we have shown that both the N-terminal catalytic domain and the C-terminal PGB domain require muramyl-δ-lactam for substrate binding. As with carbohydrate-binding modules from cellulases and xylanases, the PGB domain may be responsible for increasing the processivity of SleC by concentrating the enzyme at the surface of the substrate.

Funding
This study was supported by the:
  • National Institute of General Medical Sciences (NIGMS)
  • National Institutes of Health (NIH) (Award 8 P20 GM103430-12)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.072454-0
2014-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/209.html?itemId=/content/journal/micro/10.1099/mic.0.072454-0&mimeType=html&fmt=ahah

References

  1. Adams C. M., Eckenroth B. E., Putnam E. E., Doublié S., Shen A. ( 2013). Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog 9:e1003165 [View Article][PubMed]
    [Google Scholar]
  2. Ali M. K., Hayashi H., Karita S., Goto M., Kimura T., Sakka K., Ohmiya K. ( 2001). Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci Biotechnol Biochem 65:41–47 [View Article][PubMed]
    [Google Scholar]
  3. Bolam D. N., Ciruela A., McQueen-Mason S., Simpson P., Williamson M. P., Rixon J. E., Boraston A., Hazlewood G. P., Gilbert H. J. ( 1998). Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331:775–781[PubMed]
    [Google Scholar]
  4. Boraston A. B., Kwan E., Chiu P., Warren R. A., Kilburn D. G. ( 2003). Recognition and hydrolysis of noncrystalline cellulose. J Biol Chem 278:6120–6127 [View Article][PubMed]
    [Google Scholar]
  5. Boraston A. B., Bolam D. N., Gilbert H. J., Davies G. J. ( 2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781 [View Article][PubMed]
    [Google Scholar]
  6. Burns D. A., Heap J. T., Minton N. P. ( 2010a). SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. J Bacteriol 192:657–664 [View Article][PubMed]
    [Google Scholar]
  7. Burns D. A., Heap J. T., Minton N. P. ( 2010b). Clostridium difficile spore germination: an update. Res Microbiol 161:730–734 [View Article][PubMed]
    [Google Scholar]
  8. Callewaert L., Walmagh M., Michiels C. W., Lavigne R. ( 2011). Food applications of bacterial cell wall hydrolases. Curr Opin Biotechnol 22:164–171 [View Article][PubMed]
    [Google Scholar]
  9. Carroll K. C., Bartlett J. G. ( 2011). Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annu Rev Microbiol 65:501–521 [View Article][PubMed]
    [Google Scholar]
  10. Chalut C., Charpentier X., Remy M.-H., Masson J.-M. ( 2001). Differential responses of Escherichia coli cells expressing cytoplasmic domain mutants of penicillin-binding protein 1b after impairment of penicillin-binding proteins 1a and 3. J Bacteriol 183:200–206 [View Article][PubMed]
    [Google Scholar]
  11. Courtin P., Miranda G., Guillot A., Wessner F., Mézange C., Domakova E., Kulakauskas S., Chapot-Chartier M. P. ( 2006). Peptidoglycan structure analysis of Lactococcus lactis reveals the presence of an l,d-carboxypeptidase involved in peptidoglycan maturation. J Bacteriol 188:5293–5298 [View Article][PubMed]
    [Google Scholar]
  12. Deakin L. J., Clare S., Fagan R. P., Dawson L. F., Pickard D. J., West M. R., Wren B. W., Fairweather N. F., Dougan G., Lawley T. D. ( 2012). The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect Immun 80:2704–2711 [View Article][PubMed]
    [Google Scholar]
  13. Dideberg O., Charlier P., Dive G., Joris B., Frère J. M., Ghuysen J. M. ( 1982). Structure of a Zn2+-containing d-alanyl-d-alanine-cleaving carboxypeptidase at 2.5 Å resolution. Nature 299:469–470 [View Article][PubMed]
    [Google Scholar]
  14. Dowd M. M., Orsburn B., Popham D. L. ( 2008). Cortex peptidoglycan lytic activity in germinating Bacillus anthracis spores. J Bacteriol 190:4541–4548 [View Article][PubMed]
    [Google Scholar]
  15. Foster S. J. ( 1991). Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J Gen Microbiol 137:1987–1998 [View Article][PubMed]
    [Google Scholar]
  16. Ghantoji S. S., Sail K., Lairson D. R., DuPont H. L., Garey K. W. ( 2010). Economic healthcare costs of Clostridium difficile infection: a systematic review. J Hosp Infect 74:309–318 [View Article][PubMed]
    [Google Scholar]
  17. Heffron J. D., Sherry N., Popham D. L. ( 2011). In vitro studies of peptidoglycan binding and hydrolysis by the Bacillus anthracis germination-specific lytic enzyme SleB. J Bacteriol 193:125–131 [View Article][PubMed]
    [Google Scholar]
  18. Hizukuri Y., Morton J. F., Yakushi T., Kojima S., Homma M. ( 2009). The peptidoglycan-binding (PGB) domain of the Escherichia coli Pal protein can also function as the PGB domain in E. coli flagellar motor protein MotB. J Biochem 146:219–229 [View Article][PubMed]
    [Google Scholar]
  19. Ishikawa S., Yamane K., Sekiguchi J. ( 1998). Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of Bacillus subtilis spores. J Bacteriol 180:1375–1380[PubMed]
    [Google Scholar]
  20. Jehl M.-A., Arnold R., Rattei T. ( 2011). Effective – a database of predicted secreted bacterial proteins. Nucleic Acids Res 39:Database issueD591–D595 [View Article][PubMed]
    [Google Scholar]
  21. Jing X., Robinson H. R., Heffron J. D., Popham D. L., Schubot F. D. ( 2012). The catalytic domain of the germination-specific lytic transglycosylase SleB from Bacillus anthracis displays a unique active site topology. Proteins 80:2469–2475 [View Article][PubMed]
    [Google Scholar]
  22. Kee V. R. ( 2012). Clostridium difficile infection in older adults: a review and update on its management. Am J Geriatr Pharmacother 10:14–24 [View Article][PubMed]
    [Google Scholar]
  23. Kelly C. P., LaMont J. T. ( 2008). Clostridium difficile – more difficult than ever. N Engl J Med 359:1932–1940 [View Article][PubMed]
    [Google Scholar]
  24. Kopp U., Roos M., Wecke J., Labischinski H. ( 1996). Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target. Microb Drug Resist 2:29–41 [View Article][PubMed]
    [Google Scholar]
  25. Kumazawa T., Masayama A., Fukuoka S., Makino S., Yoshimura T., Moriyama R. ( 2007). Mode of action of a germination-specific cortex-lytic enzyme, SleC, of Clostridium perfringens S40. Biosci Biotechnol Biochem 71:884–892 [View Article][PubMed]
    [Google Scholar]
  26. Lawley T. D., Clare S., Deakin L. J., Goulding D., Yen J. L., Raisen C., Brandt C., Lovell J., Cooke F. & other authors ( 2010). Use of purified Clostridium difficile spores to facilitate evaluation of health care disinfection regimens. Appl Environ Microbiol 76:6895–6900 [View Article][PubMed]
    [Google Scholar]
  27. Leffler D. A., Lamont J. T. ( 2009). Treatment of Clostridium difficile-associated disease. Gastroenterology 136:1899–1912 [View Article][PubMed]
    [Google Scholar]
  28. Leggett M. J., McDonnell G., Denyer S. P., Setlow P., Maillard J. Y. ( 2012). Bacterial spore structures and their protective role in biocide resistance. J Appl Microbiol 113:485–498 [View Article][PubMed]
    [Google Scholar]
  29. Maroo S., Lamont J. T. ( 2006). Recurrent Clostridium difficile.. Gastroenterology 130:1311–1316 [View Article][PubMed]
    [Google Scholar]
  30. Paredes-Sabja D., Sarker M. R. ( 2011). Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells. Anaerobe 17:78–84 [View Article][PubMed]
    [Google Scholar]
  31. Paredes-Sabja D., Setlow P., Sarker M. R. ( 2009). SleC is essential for cortex peptidoglycan hydrolysis during germination of spores of the pathogenic bacterium Clostridium perfringens.. J Bacteriol 191:2711–2720 [View Article][PubMed]
    [Google Scholar]
  32. Pépin J., Valiquette L., Cossette B. ( 2005). Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ 173:1037–1042 [View Article][PubMed]
    [Google Scholar]
  33. Popham D. L., Helin J., Costello C. E., Setlow P. ( 1996). Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proc Natl Acad Sci U S A 93:15405–15410 [View Article][PubMed]
    [Google Scholar]
  34. Reid C. W., Blackburn N. T., Clarke A. J. ( 2006). Role of arginine residues in the active site of the membrane-bound lytic transglycosylase B from Pseudomonas aeruginosa.. Biochemistry 45:2129–2138 [View Article][PubMed]
    [Google Scholar]
  35. Rupnik M., Wilcox M. H., Gerding D. N. ( 2009). Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7:526–536 [View Article][PubMed]
    [Google Scholar]
  36. Sarker M. R., Paredes-Sabja D. ( 2012). Molecular basis of early stages of Clostridium difficile infection: germination and colonization. Future Microbiol 7:933–943 [View Article][PubMed]
    [Google Scholar]
  37. Setlow P. ( 2003). Spore germination. Curr Opin Microbiol 6:550–556 [View Article][PubMed]
    [Google Scholar]
  38. Shimamoto S., Moriyama R., Sugimoto K., Miyata S., Makino S. ( 2001). Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity. J Bacteriol 183:3742–3751 [View Article][PubMed]
    [Google Scholar]
  39. Tillotson G. S., Tillotson J. ( 2011). Clostridium difficile – a moving target. F1000 Med Rep 3:6 [View Article][PubMed]
    [Google Scholar]
  40. Tomme P., Van Tilbeurgh H., Pettersson G., Van Damme J., Vandekerckhove J., Knowles J., Teeri T., Claeyssens M. ( 1988). Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 170:575–581 [View Article][PubMed]
    [Google Scholar]
  41. Ursinus A., van den Ent F., Brechtel S., de Pedro M., Höltje J. V., Löwe J., Vollmer W. ( 2004). Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli.. J Bacteriol 186:6728–6737 [View Article][PubMed]
    [Google Scholar]
  42. Walk S. T., Micic D., Galecki A. T., Young V. B., Aronoff D. M. ( 2013). Understanding increased mortality in Clostridium difficile-infected older adults. Clin Infect Dis 57:625–626 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.072454-0
Loading
/content/journal/micro/10.1099/mic.0.072454-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error