1887

Abstract

Biofilm formation by the Gram-positive bacterium is tightly controlled at the level of transcription. The biofilm contains specialized cell types that arise from controlled differentiation of the resident isogenic bacteria. DegU is a response regulator that controls several social behaviours exhibited by including swarming motility, biofilm formation and extracellular protease (exoprotease) production. Here, for the first time, we examine the prevalence and origin of exoprotease-producing cells within the biofilm. This was accomplished using single-cell analysis techniques including flow cytometry and fluorescence microscopy. We established that the number of exoprotease-producing cells increases as the biofilm matures. This is reflected by both an increase at the level of transcription and an increase in exoprotease activity over time. We go on to demonstrate that exoprotease-producing cells arise from more than one cell type, namely matrix-producing and non-matrix-producing cells. these findings allow us to add exoprotease-producing cells to the list of specialized cell types that are derived during biofilm formation and furthermore the data highlight the plasticity in the origin of differentiated cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.072389-0
2014-01-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/56.html?itemId=/content/journal/micro/10.1099/mic.0.072389-0&mimeType=html&fmt=ahah

References

  1. Allan C., Burel J. M., Moore J., Blackburn C., Linkert M., Loynton S., Macdonald D., Moore W. J., Neves C..& other authors ( 2012;). OMERO: flexible, model-driven data management for experimental biology. Nat Methods9:245–253 [CrossRef][PubMed]
    [Google Scholar]
  2. Branda S. S., González-Pastor J. E., Ben-Yehuda S., Losick R., Kolter R..( 2001;). Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A98:11621–11626 [CrossRef][PubMed]
    [Google Scholar]
  3. Branda S. S., Vik S., Friedman L., Kolter R..( 2005;). Biofilms: the matrix revisited. Trends Microbiol13:20–26 [CrossRef][PubMed]
    [Google Scholar]
  4. Branda S. S., Chu F., Kearns D. B., Losick R., Kolter R..( 2006;). A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol59:1229–1238 [CrossRef][PubMed]
    [Google Scholar]
  5. Braun V., Schmitz G..( 1980;). Excretion of a protease by Serratia marcescens. Arch Microbiol124:55–61 [CrossRef][PubMed]
    [Google Scholar]
  6. Cairns L. S., Marlow V. L., Bissett E., Ostrowski A., Stanley-Wall N. R..( 2013;). A mechanical signal transmitted by the flagellum controls signalling in Bacillus subtilis. Mol Microbiol90:6–21[PubMed]
    [Google Scholar]
  7. Chai Y., Beauregard P. B., Vlamakis H., Losick R., Kolter R..( 2012;). Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. MBio3:e00184-12 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen Y., Yan F., Chai Y., Liu H., Kolter R., Losick R., Guo J. H..( 2013;). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol15:848–864 [CrossRef][PubMed]
    [Google Scholar]
  9. Connelly M. B., Young G. M., Sloma A..( 2004;). Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis. J Bacteriol186:4159–4167 [CrossRef][PubMed]
    [Google Scholar]
  10. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J..( 1987;). Bacterial biofilms in nature and disease. Annu Rev Microbiol41:435–464 [CrossRef][PubMed]
    [Google Scholar]
  11. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M..( 1995;). Microbial biofilms. Annu Rev Microbiol49:711–745 [CrossRef][PubMed]
    [Google Scholar]
  12. Dahl M. K., Msadek T., Kunst F., Rapoport G..( 1991;). Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J Bacteriol173:2539–2547[PubMed]
    [Google Scholar]
  13. Dahl M. K., Msadek T., Kunst F., Rapoport G..( 1992;). The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J Biol Chem267:14509–14514[PubMed]
    [Google Scholar]
  14. de Jong I. G., Beilharz K., Kuipers O. P., Veening J. W..( 2011;). Live cell imaging of Bacillus subtilis and Streptococcus pneumoniae using automated time-lapse microscopy. J Vis Exp53:3145[PubMed]
    [Google Scholar]
  15. Flemming H. C., Wingender J..( 2010;). The biofilm matrix. Nat Rev Microbiol8:623–633[PubMed]
    [Google Scholar]
  16. Harwood C. R., Cutting S. M..( 1990;). Molecular Biological Methods for Bacillus Chichester: Wiley;
    [Google Scholar]
  17. Hobley L., Ostrowski A., Rao F. V., Bromley K. M., Porter M., Prescott A. R., MacPhee C. E., van Aalten D. M., Stanley-Wall N. R..( 2013;). BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci U S A110:13600–13605 [CrossRef][PubMed]
    [Google Scholar]
  18. Kobayashi K..( 2007;). Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol Microbiol66:395–409 [CrossRef][PubMed]
    [Google Scholar]
  19. Kobayashi K., Iwano M..( 2012;). BslA (YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol85:51–66 [CrossRef][PubMed]
    [Google Scholar]
  20. Lopez D., Vlamakis H., Kolter R..( 2009;). Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev33:152–163 [CrossRef][PubMed]
    [Google Scholar]
  21. Msadek T..( 1999;). When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. Trends Microbiol7:201–207 [CrossRef][PubMed]
    [Google Scholar]
  22. Murray E. J., Kiley T. B., Stanley-Wall N. R..( 2009a;). A pivotal role for the response regulator DegU in controlling multicellular behaviour. Microbiology155:1–8 [CrossRef][PubMed]
    [Google Scholar]
  23. Murray E. J., Strauch M. A., Stanley-Wall N. R..( 2009b;). σX is involved in controlling Bacillus subtilis biofilm architecture through the AbrB homologue Abh. J Bacteriol191:6822–6832 [CrossRef][PubMed]
    [Google Scholar]
  24. Ostrowski A., Mehert A., Prescott A., Kiley T. B., Stanley-Wall N. R..( 2011;). YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis. J Bacteriol193:4821–4831 [CrossRef][PubMed]
    [Google Scholar]
  25. Romero D., Aguilar C., Losick R., Kolter R..( 2010;). Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A107:2230–2234 [CrossRef][PubMed]
    [Google Scholar]
  26. Stanley N. R., Lazazzera B. A..( 2005;). Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-dl-glutamic acid production and biofilm formation. Mol Microbiol57:1143–1158 [CrossRef][PubMed]
    [Google Scholar]
  27. Tsukahara K., Ogura M..( 2008;). Characterization of DegU-dependent expression of bpr in Bacillus subtilis. FEMS Microbiol Lett280:8–13 [CrossRef][PubMed]
    [Google Scholar]
  28. Veening J. W., Igoshin O. A., Eijlander R. T., Nijland R., Hamoen L. W., Kuipers O. P..( 2008;). Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol Syst Biol4:184 [CrossRef][PubMed]
    [Google Scholar]
  29. Verhamme D. T., Kiley T. B., Stanley-Wall N. R..( 2007;). DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol65:554–568 [CrossRef][PubMed]
    [Google Scholar]
  30. Vlamakis H., Aguilar C., Losick R., Kolter R..( 2008;). Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev22:945–953 [CrossRef][PubMed]
    [Google Scholar]
  31. Vlamakis H., Chai Y., Beauregard P., Losick R., Kolter R..( 2013;). Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol11:157–168 [CrossRef][PubMed]
    [Google Scholar]
  32. Young J. W., Locke J. C., Altinok A., Rosenfeld N., Bacarian T., Swain P. S., Mjolsness E., Elowitz M. B..( 2012;). Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat Protoc7:80–88 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.072389-0
Loading
/content/journal/micro/10.1099/mic.0.072389-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error