1887

Abstract

Most healthy adults are protected from meningococcal disease by the presence of naturally acquired anti-meningococcal antibodies; however, the identity of the target antigens of this protective immunity remains unclear, particularly for protection against serogroup B disease. To identify the protein targets of natural protective immunity we developed an immunoprecipitation and proteomics approach to define the immunoproteome of the meningococcus. Sera from 10 healthy individuals showing serum bactericidal activity against both a meningococcal C strain (L91543) and the B strain MC58, together with commercially available pooled human sera, were used as probe antisera. Immunoprecipitation was performed with each serum sample and live cells from both meningococcal strains. Immunoprecipitated proteins were identified by MS. Analysis of the immunoproteome from each serum demonstrated both pan-reactive antigens that were recognized by most sera as well as subject-specific antigens. Most antigens were found in both meningococcal strains, but a few were strain-specific. Many of the immunoprecipitated proteins have been characterized previously as surface antigens, including adhesins and proteases, several of which have been recognized as vaccine candidate antigens, e.g. factor H-binding protein, NadA and neisserial heparin-binding antigen. The data demonstrate clearly the presence of meningococcal antibodies in healthy individuals with no history of meningococcal infection and a wide diversity of immune responses. The identification of the immunoreactive proteins of the meningococcus provides a basis for understanding the role of each antigen in the natural immunity associated with carriage and may help to design vaccination strategies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071829-0
2014-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/2/429.html?itemId=/content/journal/micro/10.1099/mic.0.071829-0&mimeType=html&fmt=ahah

References

  1. Abel A., Sánchez S., Arenas J., Criado M. T., Ferreirós C. M.. ( 2007;). Bioinformatic analysis of outer membrane proteome of Neisseria meningitidis and Neisseria lactamica. . Int Microbiol 10:, 5–11.[PubMed]
    [Google Scholar]
  2. Ala’Aldeen D. A., Neal K. R., Ait-Tahar K., Nguyen-Van-Tam J. S., English A., Falla T. J., Hawkey P. M., Slack R. C.. ( 2000;). Dynamics of meningococcal long-term carriage among university students and their implications for mass vaccination. . J Clin Microbiol 38:, 2311–2316.[PubMed]
    [Google Scholar]
  3. Bambini S., Muzzi A., Olcen P., Rappuoli R., Pizza M., Comanducci M.. ( 2009;). Distribution and genetic variability of three vaccine components in a panel of strains representative of the diversity of serogroup B meningococcus. . Vaccine 27:, 2794–2803. [CrossRef][PubMed]
    [Google Scholar]
  4. Bart A., Dankert J., van der Ende A.. ( 1999;). Antigenic variation of the class I outer membrane protein in hyperendemic Neisseria meningitidis strains in the Netherlands. . Infect Immun 67:, 3842–3846.[PubMed]
    [Google Scholar]
  5. Beernink P. T., Granoff D. M.. ( 2009;). The modular architecture of meningococcal factor H-binding protein. . Microbiology 155:, 2873–2883. [CrossRef][PubMed]
    [Google Scholar]
  6. Bernardini G., Renzone G., Comanducci M., Mini R., Arena S., D’Ambrosio C., Bambini S., Trabalzini L., Grandi G.. & other authors ( 2004;). Proteome analysis of Neisseria meningitidis serogroup A. . Proteomics 4:, 2893–2926. [CrossRef][PubMed]
    [Google Scholar]
  7. Bjorvatn B., Lund V., Kristiansen B. E., Korsnes L., Spanne O., Lindqvist B.. ( 1984;). Applications of restriction endonuclease fingerprinting of chromosomal DNA of Neisseria meningitidis. . J Clin Microbiol 19:, 763–765.[PubMed]
    [Google Scholar]
  8. Bjune G., Høiby E. A., Grønnesby J. K., Arnesen O., Fredriksen J. H., Halstensen A., Holten E., Lindbak A. K., Nøkleby H.. & other authors ( 1991;). Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. . Lancet 338:, 1093–1096. [CrossRef][PubMed]
    [Google Scholar]
  9. Bøhle L. A., Riaz T., Egge-Jacobsen W., Skaugen M., Busk O. L., Eijsink V. G., Mathiesen G.. ( 2011;). Identification of surface proteins in Enterococcus faecalis V583. . BMC Genomics 12:, 135. [CrossRef][PubMed]
    [Google Scholar]
  10. Borrow R., Carlone G. M.. ( 2001;). Serogroup B and C serum bactericidal assays. . In Meningococcal Vaccines, Methods and Protocols, pp. 289–304. Edited by Pollard A. J., Maiden N. C. L... Totowa, NJ:: Humana Press;. [CrossRef]
    [Google Scholar]
  11. Comanducci M., Bambini S., Brunelli B., Adu-Bobie J., Aricò B., Capecchi B., Giuliani M. M., Masignani V., Santini L.. & other authors ( 2002;). NadA, a novel vaccine candidate of Neisseria meningitidis. . J Exp Med 195:, 1445–1454. [CrossRef][PubMed]
    [Google Scholar]
  12. Comanducci M., Bambini S., Caugant D. A., Mora M., Brunelli B., Capecchi B., Ciucchi L., Rappuoli R., Pizza M.. ( 2004;). NadA diversity and carriage in Neisseria meningitidis. . Infect Immun 72:, 4217–4223. [CrossRef][PubMed]
    [Google Scholar]
  13. Fagnocchi L., Biolchi A., Ferlicca F., Boccadifuoco G., Brunelli B., Brier S., Norais N., Chiarot E., Bensi G.. & other authors ( 2013;). Transcriptional regulation of the nadA gene in Neisseria meningitidis impacts the prediction of coverage of a multicomponent meningococcal serogroup B vaccine. . Infect Immun 81:, 560–569. [CrossRef][PubMed]
    [Google Scholar]
  14. Fernández-Arenas E., Molero G., Nombela C., Diez-Orejas R., Gil C.. ( 2004;). Low virulent strains of Candida albicans: unravelling the antigens for a future vaccine. . Proteomics 4:, 3007–3020. [CrossRef][PubMed]
    [Google Scholar]
  15. Fletcher L. D., Bernfield L., Barniak V., Farley J. E., Howell A., Knauf M., Ooi P., Smith R. P., Weise P.. & other authors ( 2004;). Vaccine potential of the Neisseria meningitidis 2086 lipoprotein. . Infect Immun 72:, 2088–2100. [CrossRef][PubMed]
    [Google Scholar]
  16. Fredriksen J. H., Rosenqvist E., Wedege E., Bryn K., Bjune G., Frøholm L. O., Lindbak A. K., Møgster B., Namork E.. & other authors ( 1991;). Production, characterization and control of MenB-vaccine “Folkehelsa”: an outer membrane vesicle vaccine against group B meningococcal disease. . NIPH Ann 14:, 67–79, discussion 79–80.[PubMed]
    [Google Scholar]
  17. Giuliani M. M., Adu-Bobie J., Comanducci M., Aricò B., Savino S., Santini L., Brunelli B., Bambini S., Biolchi A.. & other authors ( 2006;). A universal vaccine for serogroup B meningococcus. . Proc Natl Acad Sci U S A 103:, 10834–10839. [CrossRef][PubMed]
    [Google Scholar]
  18. Goldschneider I., Gotschlich E. C., Artenstein M. S.. ( 1969a;). Human immunity to the meningococcus. I. The role of humoral antibodies. . J Exp Med 129:, 1307–1326. [CrossRef][PubMed]
    [Google Scholar]
  19. Goldschneider I., Gotschlich E. C., Artenstein M. S.. ( 1969b;). Human immunity to the meningococcus. II. Development of natural immunity. . J Exp Med 129:, 1327–1348. [CrossRef][PubMed]
    [Google Scholar]
  20. Granoff D. M.. ( 2010;). Review of meningococcal group B vaccines. . Clin Infect Dis 50: (Suppl 2), S54–S65. [CrossRef][PubMed]
    [Google Scholar]
  21. Gray S. J., Trotter C. L., Ramsay M. E., Guiver M., Fox A. J., Borrow R., Mallard R. H., Kaczmarski E. B..Meningococcal Reference Unit ( 2006;). Epidemiology of meningococcal disease in England and Wales 1993/94 to 2003/04: contribution and experiences of the Meningococcal Reference Unit. . J Med Microbiol 55:, 887–896. [CrossRef][PubMed]
    [Google Scholar]
  22. Gupta S. K., Smita S., Sarangi A. N., Srivastava M., Akhoon B. A., Rahman Q., Gupta S. K.. ( 2010;). In silico CD4+ T-cell epitope prediction and HLA distribution analysis for the potential proteins of Neisseria meningitidis Serogroup B – a clue for vaccine development. . Vaccine 28:, 7092–7097. [CrossRef][PubMed]
    [Google Scholar]
  23. Hung M. C., Heckels J. E., Christodoulides M.. ( 2013;). The adhesin complex protein (ACP) of Neisseria meningitidis is a new adhesin with vaccine potential. . MBio 4:, e00041-13. [CrossRef][PubMed]
    [Google Scholar]
  24. Iagudaeva E. Iu., Zhigis L. S., Razguliaeva O. A., Zueva V. S., Mel’nikov E. E., Zubov V. P., Kozlov L. V., Bichucher A. M., Kotel’nikova O. V.. & other authors ( 2010;). [Isolation and determination of activity of IgA1 protease from Neisseria meningitidis]. . Bioorg Khim 36:, 89–97.[PubMed]
    [Google Scholar]
  25. Jordens J. Z., Williams J. N., Jones G. R., Christodoulides M., Heckels J. E.. ( 2004;). Development of immunity to serogroup B meningococci during carriage of Neisseria meningitidis in a cohort of university students. . Infect Immun 72:, 6503–6510. [CrossRef][PubMed]
    [Google Scholar]
  26. Koeberling O., Delany I., Granoff D. M.. ( 2011;). A critical threshold of meningococcal factor H binding protein expression is required for increased breadth of protective antibodies elicited by native outer membrane vesicle vaccines. . Clin Vaccine Immunol 18:, 736–742. [CrossRef][PubMed]
    [Google Scholar]
  27. Kolberg J., Hammerschmidt S., Frank R., Jonák J., Sanderová H., Aase A.. ( 2008;). The surface-associated elongation factor Tu is concealed for antibody binding on viable pneumococci and meningococci. . FEMS Immunol Med Microbiol 53:, 222–230. [CrossRef][PubMed]
    [Google Scholar]
  28. Li Y., Sun Y. H., Ison C., Levine M. M., Tang C. M.. ( 2004;). Vaccination with attenuated Neisseria meningitidis strains protects against challenge with live Meningococci. . Infect Immun 72:, 345–351. [CrossRef][PubMed]
    [Google Scholar]
  29. Ling E., Feldman G., Portnoi M., Dagan R., Overweg K., Mulholland F., Chalifa-Caspi V., Wells J., Mizrachi-Nebenzahl Y.. ( 2004;). Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. . Clin Exp Immunol 138:, 290–298. [CrossRef][PubMed]
    [Google Scholar]
  30. Masignani V., Comanducci M., Giuliani M. M., Bambini S., Adu-Bobie J., Aricò B., Brunelli B., Pieri A., Santini L.. & other authors ( 2003;). Vaccination against Neisseria meningitidis using three variants of the lipoprotein GNA1870. . J Exp Med 197:, 789–799. [CrossRef][PubMed]
    [Google Scholar]
  31. Mendum T. A., Newcombe J., McNeilly C. L., McFadden J.. ( 2009;). Towards the immunoproteome of Neisseria meningitidis. . PLoS ONE 4:, e5940. [CrossRef][PubMed]
    [Google Scholar]
  32. Mignogna G., Giorgi A., Stefanelli P., Neri A., Colotti G., Maras B., Schininà M. E.. ( 2005;). Inventory of the proteins in Neisseria meningitidis serogroup B strain MC58. . J Proteome Res 4:, 1361–1370. [CrossRef][PubMed]
    [Google Scholar]
  33. Muzzi A., Mora M., Pizza M., Rappuoli R., Donati C.. ( 2013;). Conservation of meningococcal antigens in the genus Neisseria. . MBio 4:, e00163-13. [CrossRef][PubMed]
    [Google Scholar]
  34. Nesvizhskii A. I., Keller A., Kolker E., Aebersold R.. ( 2003;). A statistical model for identifying proteins by tandem mass spectrometry. . Anal Chem 75:, 4646–4658. [CrossRef][PubMed]
    [Google Scholar]
  35. Newcombe J., Eales-Reynolds L. J., Wootton L., Gorringe A. R., Funnell S. G., Taylor S. C., McFadden J. J.. ( 2004;). Infection with an avirulent phoP mutant of Neisseria meningitidis confers broad cross-reactive immunity. . Infect Immun 72:, 338–344. [CrossRef][PubMed]
    [Google Scholar]
  36. Oster P., O’Hallahan J., Aaberge I., Tilman S., Ypma E., Martin D.. ( 2007;). Immunogenicity and safety of a strain-specific MenB OMV vaccine delivered to under 5-year olds in New Zealand. . Vaccine 25:, 3075–3079. [CrossRef][PubMed]
    [Google Scholar]
  37. Pizza M., Scarlato V., Masignani V., Giuliani M. M., Aricò B., Comanducci M., Jennings G. T., Baldi L., Bartolini E.. & other authors ( 2000;). Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. . Science 287:, 1816–1820. [CrossRef][PubMed]
    [Google Scholar]
  38. Pollard A. J., Frasch C.. ( 2001;). Development of natural immunity to Neisseria meningitidis. . Vaccine 19:, 1327–1346. [CrossRef][PubMed]
    [Google Scholar]
  39. Rodríguez A. P., Dickinson F., Baly A., Martinez R.. ( 1999;). The epidemiological impact of antimeningococcal B vaccination in Cuba. . Mem Inst Oswaldo Cruz 94:, 433–440. [CrossRef][PubMed]
    [Google Scholar]
  40. Sellman B. R., Howell A. P., Kelly-Boyd C., Baker S. M.. ( 2005;). Identification of immunogenic and serum binding proteins of Staphylococcus epidermidis. . Infect Immun 73:, 6591–6600. [CrossRef][PubMed]
    [Google Scholar]
  41. Serruto D., Adu-Bobie J., Scarselli M., Veggi D., Pizza M., Rappuoli R., Aricò B.. ( 2003;). Neisseria meningitidis App, a new adhesin with autocatalytic serine protease activity. . Mol Microbiol 48:, 323–334. [CrossRef][PubMed]
    [Google Scholar]
  42. Serruto D., Spadafina T., Ciucchi L., Lewis L. A., Ram S., Tontini M., Santini L., Biolchi A., Seib K. L.. & other authors ( 2010;). Neisseria meningitidis GNA2132, a heparin-binding protein that induces protective immunity in humans. . Proc Natl Acad Sci U S A 107:, 3770–3775. [CrossRef][PubMed]
    [Google Scholar]
  43. Serruto D., Bottomley M. J., Ram S., Giuliani M. M., Rappuoli R.. ( 2012;). The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens. . Vaccine 30: (Suppl 2), B87–B97. [CrossRef][PubMed]
    [Google Scholar]
  44. Severin A., Nickbarg E., Wooters J., Quazi S. A., Matsuka Y. V., Murphy E., Moutsatsos I. K., Zagursky R. J., Olmsted S. B.. ( 2007;). Proteomic analysis and identification of Streptococcus pyogenes surface-associated proteins. . J Bacteriol 189:, 1514–1522. [CrossRef][PubMed]
    [Google Scholar]
  45. Sinha S., Arora S., Kosalai K., Namane A., Pym A. S., Cole S. T.. ( 2002;). Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. . Comp Funct Genomics 3:, 470–483. [CrossRef][PubMed]
    [Google Scholar]
  46. Trinkle-Mulcahy L., Boulon S., Lam Y. W., Urcia R., Boisvert F. M., Vandermoere F., Morrice N. A., Swift S., Rothbauer U.. & other authors ( 2008;). Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. . J Cell Biol 183:, 223–239. [CrossRef][PubMed]
    [Google Scholar]
  47. Turner D. P. J., Marietou A. G., Johnston L., Ho K. K. L., Rogers A. J., Wooldridge K. G., Ala’Aldeen D. A.. ( 2006;). Characterization of MspA, an immunogenic autotransporter protein that mediates adhesion to epithelial and endothelial cells in Neisseria meningitidis. . Infect Immun 74:, 2957–2964. [CrossRef][PubMed]
    [Google Scholar]
  48. Uli L., Castellanos-Serra L., Betancourt L., Domínguez F., Barberá R., Sotolongo F., Guillén G., Pajón Feyt R.. ( 2006;). Outer membrane vesicles of the VA-MENGOC-BC vaccine against serogroup B of Neisseria meningitidis: analysis of protein components by two-dimensional gel electrophoresis and mass spectrometry. . Proteomics 6:, 3389–3399. [CrossRef][PubMed]
    [Google Scholar]
  49. van Ulsen P., Adler B., Fassler P., Gilbert M., van Schilfgaarde M., van der Ley P., van Alphen L., Tommassen J.. ( 2006;). A novel phase-variable autotransporter serine protease, AusI, of Neisseria meningitidis. . Microbes Infect 8:, 2088–2097. [CrossRef][PubMed]
    [Google Scholar]
  50. Vaughan T. E., Skipp P. J., O’Connor C. D., Hudson M. J., Vipond R., Elmore M. J., Gorringe A. R.. ( 2006;). Proteomic analysis of Neisseria lactamica and Neisseria meningitidis outer membrane vesicle vaccine antigens. . Vaccine 24:, 5277–5293. [CrossRef][PubMed]
    [Google Scholar]
  51. Vipond C., Suker J., Jones C., Tang C., Feavers I. M., Wheeler J. X.. ( 2006;). Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. . Proteomics 6:, 3400–3413. [CrossRef][PubMed]
    [Google Scholar]
  52. Vogel U., Taha M. K., Vazquez J. A., Findlow J., Claus H., Stefanelli P., Caugant D. A., Kriz P., Abad R.. & other authors ( 2013;). Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment. . Lancet Infect Dis 13:, 416–425. [CrossRef][PubMed]
    [Google Scholar]
  53. Vytvytska O., Nagy E., Blüggel M., Meyer H. E., Kurzbauer R., Huber L. A., Klade C. S.. ( 2002;). Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. . Proteomics 2:, 580–590. [CrossRef][PubMed]
    [Google Scholar]
  54. Welsch J. A., Moe G. R., Rossi R., Adu-Bobie J., Rappuoli R., Granoff D. M.. ( 2003;). Antibody to genome-derived neisserial antigen 2132, a Neisseria meningitidis candidate vaccine, confers protection against bacteremia in the absence of complement-mediated bactericidal activity. . J Infect Dis 188:, 1730–1740. [CrossRef][PubMed]
    [Google Scholar]
  55. Wheeler J. X., Vipond C., Feavers I. M.. ( 2007;). Exploring the proteome of meningococcal outer membrane vesicle vaccines. . Proteomics Clin Appl 1:, 1198–1210. [CrossRef][PubMed]
    [Google Scholar]
  56. Williams J. N., Skipp P. J., O’Connor C. D., Christodoulides M., Heckels J. E.. ( 2009;). Immunoproteomic analysis of the development of natural immunity in subjects colonized by Neisseria meningitidis reveals potential vaccine candidates. . Infect Immun 77:, 5080–5089. [CrossRef][PubMed]
    [Google Scholar]
  57. Wright J. C., Williams J. N., Christodoulides M., Heckels J. E.. ( 2002;). Immunization with the recombinant PorB outer membrane protein induces a bactericidal immune response against Neisseria meningitidis.. Infect Immun 70:, 4028–4034. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071829-0
Loading
/content/journal/micro/10.1099/mic.0.071829-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error