1887

Abstract

Mpl, a thermolysin-like metalloprotease, and PC-PLC, a phospholipase C, are synthesized as proenzymes by the intracellular bacterial pathogen . During intracellular growth, is temporarily confined in a membrane-bound vacuole whose acidification leads to Mpl autolysis and Mpl-mediated cleavage of the PC-PLC N-terminal propeptide. Mpl maturation also leads to the secretion of both Mpl and PC-PLC across the bacterial cell wall. Previously, we identified negatively charged and uncharged amino acid residues within the N terminus of the PC-PLC propeptide that influence the ability of Mpl to mediate the maturation of PC-PLC, suggesting that these residues promote the interaction of the PC-PLC propeptide with Mpl. In the present study, we identified a non-catalytic histidine residue (H226) that influences Mpl secretion across the cell wall and its ability to process PC-PLC. Our results suggest that a positive charge at position 226 is required for Mpl functions other than autolysis. Based on the charge requirement at this position, we hypothesize that this residue contributes to the interaction of Mpl with the PC-PLC propeptide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071779-0
2014-01-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/142.html?itemId=/content/journal/micro/10.1099/mic.0.071779-0&mimeType=html&fmt=ahah

References

  1. Arnold K., Bordoli L., Kopp J., Schwede T..( 2006;). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics22:195–201 [CrossRef][PubMed]
    [Google Scholar]
  2. Berezin C., Glaser F., Rosenberg J., Paz I., Pupko T., Fariselli P., Casadio R., Ben-Tal N..( 2004;). ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics20:1322–1324 [CrossRef][PubMed]
    [Google Scholar]
  3. Bitar A. P., Cao M., Marquis H..( 2008;). The metalloprotease of Listeria monocytogenes is activated by intramolecular autocatalysis. J Bacteriol190:107–111 [CrossRef][PubMed]
    [Google Scholar]
  4. Camilli A., Tilney L. G., Portnoy D. A..( 1993;). Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol8:143–157 [CrossRef][PubMed]
    [Google Scholar]
  5. Dawson J. E., Seckute J., De S., Schueler S. A., Oswald A. B., Nicholson L. K..( 2009;). Elucidation of a pH-folding switch in the Pseudomonas syringae effector protein AvrPto. Proc Natl Acad Sci U S A106:8543–8548 [CrossRef][PubMed]
    [Google Scholar]
  6. Feliciangeli S. F., Thomas L., Scott G. K., Subbian E., Hung C. H., Molloy S. S., Jean F., Shinde U., Thomas G..( 2006;). Identification of a pH sensor in the furin propeptide that regulates enzyme activation. J Biol Chem281:16108–16116 [CrossRef][PubMed]
    [Google Scholar]
  7. Forster B. M., Marquis H..( 2012;). Protein transport across the cell wall of monoderm Gram-positive bacteria. Mol Microbiol84:405–413 [CrossRef][PubMed]
    [Google Scholar]
  8. Forster B. M., Bitar A. P., Slepkov E. R., Kota K. J., Sondermann H., Marquis H..( 2011;). The metalloprotease of Listeria monocytogenes is regulated by pH. J Bacteriol193:5090–5097 [CrossRef][PubMed]
    [Google Scholar]
  9. Fritz R., Stiasny K., Heinz F. X..( 2008;). Identification of specific histidines as pH sensors in flavivirus membrane fusion. J Cell Biol183:353–361 [CrossRef][PubMed]
    [Google Scholar]
  10. Guex N., Peitsch M. C..( 1997;). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis18:2714–2723 [CrossRef][PubMed]
    [Google Scholar]
  11. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R..( 1989;). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59 [CrossRef][PubMed]
    [Google Scholar]
  12. Li X., Hassan S. A., Mehler E. L..( 2005;). Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties. Proteins60:464–484 [CrossRef][PubMed]
    [Google Scholar]
  13. Loessner M. J., Schneider A., Scherer S..( 1996;). Modified Listeria bacteriophage lysin genes (ply) allow efficient overexpression and one-step purification of biochemically active fusion proteins. Appl Environ Microbiol62:3057–3060[PubMed]
    [Google Scholar]
  14. Marquis H., Hager E. J..( 2000;). pH-Regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes.. Mol Microbiol35:289–298 [CrossRef][PubMed]
    [Google Scholar]
  15. Mengaud J., Geoffroy C., Cossart P..( 1991;). Identification of a new operon involved in Listeria monocytogenes virulence: its first gene encodes a protein homologous to bacterial metalloproteases. Infect Immun59:1043–1049[PubMed]
    [Google Scholar]
  16. Miyoshi S., Shinoda S..( 2000;). Microbial metalloproteases and pathogenesis. Microbes Infect2:91–98 [CrossRef][PubMed]
    [Google Scholar]
  17. Raveneau J., Geoffroy C., Beretti J.-L., Gaillard J.-L., Alouf J. E., Berche P..( 1992;). Reduced virulence of a Listeria monocytogenes phospholipase-deficient mutant obtained by transposon insertion into the zinc metalloprotease gene. Infect Immun60:916–921[PubMed]
    [Google Scholar]
  18. Schuerch D. W., Wilson-Kubalek E. M., Tweten R. K..( 2005;). Molecular basis of listeriolysin O pH dependence. Proc Natl Acad Sci U S A102:12537–12542 [CrossRef][PubMed]
    [Google Scholar]
  19. Schwede T., Kopp J., Guex N., Peitsch M. C..( 2003;). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res31:3381–3385 [CrossRef][PubMed]
    [Google Scholar]
  20. Shetron-Rama L. M., Mueller K., Bravo J. M., Bouwer H. G., Way S. S., Freitag N. E..( 2003;). Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol Microbiol48:1537–1551 [CrossRef][PubMed]
    [Google Scholar]
  21. Slepkov E. R., Pavinski Bitar A., Marquis H..( 2010;). Differentiation of propeptide residues regulating the compartmentalization, maturation and activity of the broad-range phospholipase C of Listeria monocytogenes.. Biochem J432:557–563 [CrossRef][PubMed]
    [Google Scholar]
  22. Smith K., Youngman P..( 1992;). Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie74:705–711 [CrossRef][PubMed]
    [Google Scholar]
  23. Smith G. A., Marquis H., Jones S., Johnston N. C., Portnoy D. A., Goldfine H..( 1995;). The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun63:4231–4237[PubMed]
    [Google Scholar]
  24. Snyder A., Marquis H..( 2003;). Restricted translocation across the cell wall regulates secretion of the broad-range phospholipase C of Listeria monocytogenes.. J Bacteriol185:5953–5958 [CrossRef][PubMed]
    [Google Scholar]
  25. Srivastava J., Barber D. L., Jacobson M. P..( 2007;). Intracellular pH sensors: design principles and functional significance. Physiology (Bethesda)22:30–39 [CrossRef][PubMed]
    [Google Scholar]
  26. Tilney L. G., Portnoy D. A..( 1989;). Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes.. J Cell Biol109:1597–1608 [CrossRef][PubMed]
    [Google Scholar]
  27. Yeung P. S., Zagorski N., Marquis H..( 2005;). The metalloprotease of Listeria monocytogenes controls cell wall translocation of the broad-range phospholipase C. J Bacteriol187:2601–2608 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071779-0
Loading
/content/journal/micro/10.1099/mic.0.071779-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error