1887

Abstract

Survival of micro-organisms in natural habitats depends on their ability to adapt to variations in osmotic conditions. We previously described the gene of , encoding a protein of the haloacid dehalogenase family with an unknown function in the osmotic stress response. Here we report on the functional analysis of , the orthologous gene in the phytopathogenic fungus . mRNA levels increased transiently after exposure to 0.68 M NaCl and were reduced upon return to normal osmotic conditions; deletion of the gene resulted in a partial reduction in tolerance to osmotic stress. Δ mutants contained much lower intracellular levels of glycerol than the wild-type, and did not exhibit the increase following hyper-osmotic shock expected from the high osmolarity glycerol (HOG) response. is linked and divergently transcribed with the putative glycerol dehydrogenase gene , which showed the same regulation by osmotic shock. The intergenic / regulatory region contains putative stress-response elements conserved in other fungi, and both genes shared other regulatory features, such as induction by heat shock and by illumination. Photoinduction was also observed in the HOG response gene , and was lost in mutants of the white collar gene . Previous data on glycerol production in spp. and features of the predicted CutA protein lead us to propose that produces glycerol from dihydroxyacetone, and that CutA is the enzyme involved in the synthesis of this precursor by dephosphorylation of dihydroxyacetone-3P.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071761-0
2014-01-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/26.html?itemId=/content/journal/micro/10.1099/mic.0.071761-0&mimeType=html&fmt=ahah

References

  1. Avalos J., Corrochano L. M.. ( 2013;). Carotenoid biosynthesis in Neurospora. . In Neurospora: Genomics and Molecular Biology, pp. 227–241. Edited by Kasbekar D. P., McCluskey K... Norfolk:: Caister Academic Press;.
    [Google Scholar]
  2. Avalos J., Estrada A. F.. ( 2010;). Regulation by light in Fusarium. . Fungal Genet Biol 47:, 930–938. [CrossRef][PubMed]
    [Google Scholar]
  3. Avalos J., Casadesús J., Cerdá-Olmedo E.. ( 1985;). Gibberella fujikuroi mutants obtained with UV radiation and N-methyl-N′-nitro-N-nitrosoguanidine. . Appl Environ Microbiol 49:, 187–191.[PubMed]
    [Google Scholar]
  4. Avalos J., Cerda-Olmedo E., Reyes F., Barrero A. F.. ( 2007;). Gibberellins and other metabolites of Fusarium fujikuroi and related fungi. . Curr Org Chem 11:, 721–737. [CrossRef]
    [Google Scholar]
  5. Cartharius K., Frech K., Grote K., Klocke B., Haltmeier M., Klingenhoff A., Frisch M., Bayerlein M., Werner T.. ( 2005;). MatInspector and beyond: promoter analysis based on transcription factor binding sites. . Bioinformatics 21:, 2933–2942. [CrossRef][PubMed]
    [Google Scholar]
  6. Castrillo M., García-Martínez J., Avalos J.. ( 2013;). Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. . Appl Environ Microbiol 79:, 2777–2788. [CrossRef][PubMed]
    [Google Scholar]
  7. De Vries R. P., Flitter S. J., van de Vondervoort P. J., Chaveroche M. K., Fontaine T., Fillinger S., Ruijter G. J., d’Enfert C., Visser J.. ( 2003;). Glycerol dehydrogenase, encoded by gldB is essential for osmotolerance in Aspergillus nidulans. . Mol Microbiol 49:, 131–141. [CrossRef][PubMed]
    [Google Scholar]
  8. Diano A., Bekker-Jensen S., Dynesen J., Nielsen J.. ( 2006;). Polyol synthesis in Aspergillus niger: influence of oxygen availability, carbon and nitrogen sources on the metabolism. . Biotechnol Bioeng 94:, 899–908. [CrossRef][PubMed]
    [Google Scholar]
  9. Díaz-Sánchez V., Avalos J., Limón M. C.. ( 2012;). Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi. . Appl Environ Microbiol 78:, 7258–7266. [CrossRef][PubMed]
    [Google Scholar]
  10. Ellis S. W., Grindle M., Lewis D. H.. ( 1991;). Effect of osmotic stress on yield and polyol content of dicarboximide-sensitive and -resistant strains of Neurospora crassa. . Mycol Res 95:, 457–464. [CrossRef]
    [Google Scholar]
  11. Estrada A. F., Avalos J.. ( 2008;). The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. . Fungal Genet Biol 45:, 705–718. [CrossRef][PubMed]
    [Google Scholar]
  12. Fillinger S., Chaveroche M. K., van Dijck P., de Vries R., Ruijter G., Thevelein J., d’Enfert C.. ( 2001a;). Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. . Microbiology 147:, 1851–1862.[PubMed]
    [Google Scholar]
  13. Fillinger S., Ruijter G., Tamás M. J., Visser J., Thevelein J. M., d’Enfert C.. ( 2001b;). Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans. . Mol Microbiol 39:, 145–157. [CrossRef][PubMed]
    [Google Scholar]
  14. Fujimura M., Ochiai N., Ichiishi A., Usami R., Horikoshi K., Yamaguchi I.. ( 2000;). Sensitivity to phenylpyrrole fungicides and abnormal glycerol accumulation in os and cut mutant strains of Neurospora crassa. . J Pestic Sci 25:, 31–36. [CrossRef]
    [Google Scholar]
  15. Fujimura M., Ochiai N., Oshima M., Motoyama T., Ichiishi A., Usami R., Horikoshi K., Yamaguchi I.. ( 2003;). Putative homologs of SSK22 MAPKK kinase and PBS2 MAPK kinase of Saccharomyces cerevisiae encoded by os-4 and os-5 genes for osmotic sensitivity and fungicide resistance in Neurospora crassa. . Biosci Biotechnol Biochem 67:, 186–191. [CrossRef][PubMed]
    [Google Scholar]
  16. Furukawa K., Hoshi Y., Maeda T., Nakajima T., Abe K.. ( 2005;). Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. . Mol Microbiol 56:, 1246–1261. [CrossRef][PubMed]
    [Google Scholar]
  17. García-Martínez J., Adám A. L., Avalos J.. ( 2012;). Adenylyl cyclase plays a regulatory role in development, stress resistance and secondary metabolism in Fusarium fujikuroi. . PLoS ONE 7:, e28849. [CrossRef][PubMed]
    [Google Scholar]
  18. Harding R. W., Philip D. Q., Drozdowicz B. Z., Williams N. P.. ( 1984;). A Neurospora crassa mutant which overaccumulates carotenoid pigments. . Neurospora Newsl 31:, 23–25.
    [Google Scholar]
  19. Jojima T., Igari T., Gunji W., Suda M., Inui M., Yukawa H.. ( 2012;). Identification of a HAD superfamily phosphatase, HdpA, involved in 1,3-dihydroxyacetone production during sugar catabolism in Corynebacterium glutamicum. . FEBS Lett 586:, 4228–4232. [CrossRef][PubMed]
    [Google Scholar]
  20. Krantz M., Becit E., Hohmann S.. ( 2006;). Comparative genomics of the HOG-signalling system in fungi. . Curr Genet 49:, 137–151. [CrossRef][PubMed]
    [Google Scholar]
  21. Kuznetsova E., Proudfoot M., González C. F., Brown G., Omelchenko M. V., Borozan I., Carmel L., Wolf Y. I., Mori H.. & other authors ( 2006;). Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. . J Biol Chem 281:, 36149–36161. [CrossRef][PubMed]
    [Google Scholar]
  22. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  23. Lew R. R.. ( 2011;). How does a hypha grow? The biophysics of pressurized growth in fungi. . Nat Rev Microbiol 9:, 509–518. [CrossRef][PubMed]
    [Google Scholar]
  24. Lew R. R., Levina N. N.. ( 2007;). Turgor regulation in the osmosensitive cut mutant of Neurospora crassa. . Microbiology 153:, 1530–1537. [CrossRef][PubMed]
    [Google Scholar]
  25. Limón M. C., Rodríguez-Ortiz R., Avalos J.. ( 2010;). Bikaverin production and applications. . Appl Microbiol Biotechnol 87:, 21–29. [CrossRef][PubMed]
    [Google Scholar]
  26. Mays L. L.. ( 1969;). Isolation, characterization, and genetic analysis of osmotic mutants of Neurospora crassa. . Genetics 63:, 781–794.[PubMed]
    [Google Scholar]
  27. Nevoigt E., Stahl U.. ( 1997;). Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. . FEMS Microbiol Rev 21:, 231–241. [CrossRef][PubMed]
    [Google Scholar]
  28. Ni M., Yu J. H.. ( 2007;). A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. . PLoS ONE 2:, e970. [CrossRef][PubMed]
    [Google Scholar]
  29. O’Rourke S. M., Herskowitz I., O’Shea E. K.. ( 2002;). Yeast go the whole HOG for the hyperosmotic response. . Trends Genet 18:, 405–412. [CrossRef][PubMed]
    [Google Scholar]
  30. Pahlman A. K., Granath K., Ansell R., Hohmann S., Adler L.. ( 2001;). The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. . J Biol Chem 276:, 3555–3563. [CrossRef][PubMed]
    [Google Scholar]
  31. Perkins D. D., Radford A., Sachs M. S.. ( 2001;). The Neurospora Compendium. Chromosomal Loci. San Diego, CA:: Academic Press;.
    [Google Scholar]
  32. Proctor R. H., Hohn T. M., McCormick S. P.. ( 1997;). Restoration of wild-type virulence to Tri5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation. . Microbiology 143:, 2583–2591. [CrossRef][PubMed]
    [Google Scholar]
  33. Punt P. J., Oliver R. P., Dingemanse M. A., Pouwels P. H., van den Hondel C. A. M. J. J.. ( 1987;). Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli.. Gene 56:, 117–124. [CrossRef][PubMed]
    [Google Scholar]
  34. Reed R. H., Chudek J. A., Foster R., Gadd G. M.. ( 1987;). Osmotic significance of glycerol accumulation in exponentially growing yeasts. . Appl Environ Microbiol 53:, 2119–2123.[PubMed]
    [Google Scholar]
  35. Ruijter G. J., Visser J., Rinzema A.. ( 2004;). Polyol accumulation by Aspergillus oryzae at low water activity in solid-state fermentation. . Microbiology 150:, 1095–1101. [CrossRef][PubMed]
    [Google Scholar]
  36. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  37. Schumacher M. M., Enderlin C. S., Selitrennikoff C. P.. ( 1997;). The osmotic-1 locus of Neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. . Curr Microbiol 34:, 340–347. [CrossRef][PubMed]
    [Google Scholar]
  38. Seifried A., Schultz J., Gohla A.. ( 2013;). Human HAD phosphatases: structure, mechanism, and roles in health and disease. . FEBS J 280:, 549–571. [CrossRef][PubMed]
    [Google Scholar]
  39. Studt L., Humpf H. U., Tudzynski B.. ( 2013;). Signaling governed by G proteins and cAMP is crucial for growth, secondary metabolism and sexual development in Fusarium fujikuroi. . PLoS ONE 8:, e58185. [CrossRef][PubMed]
    [Google Scholar]
  40. Tudzynski B.. ( 2005;). Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. . Appl Microbiol Biotechnol 66:, 597–611. [CrossRef][PubMed]
    [Google Scholar]
  41. Weinkove D., Poyatos J. A., Greiner H., Oltra E., Avalos J., Fukshansky L., Barrero A. F., Cerdá-Olmedo E.. ( 1998;). Mutants of Phycomyces with decreased gallic acid content. . Fungal Genet Biol 25:, 196–203. [CrossRef][PubMed]
    [Google Scholar]
  42. Wiemann P., Sieber C. M., von Bargen K. W., Studt L., Niehaus E. M., Espino J. J., Huß K., Michielse C. B., Albermann S.. & other authors ( 2013;). Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. . PLoS Pathog 9:, e1003475. [CrossRef][PubMed]
    [Google Scholar]
  43. Youssar L., Avalos J.. ( 2006;). Light-dependent regulation of the gene cut-1 of Neurospora, involved in the osmotic stress response. . Fungal Genet Biol 43:, 752–763. [CrossRef][PubMed]
    [Google Scholar]
  44. Youssar L., Avalos J.. ( 2007;). Genetic basis of the ovc phenotype of Neurospora: identification and analysis of a 77 kb deletion. . Curr Genet 51:, 19–30. [CrossRef][PubMed]
    [Google Scholar]
  45. Youssar L., Schmidhauser T. J., Avalos J.. ( 2005;). The Neurospora crassa gene responsible for the cut and ovc phenotypes encodes a protein of the haloacid dehalogenase family. . Mol Microbiol 55:, 828–838. [CrossRef][PubMed]
    [Google Scholar]
  46. Zhang Y., Lamm R., Pillonel C., Lam S., Xu J. R.. ( 2002;). Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. . Appl Environ Microbiol 68:, 532–538. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071761-0
Loading
/content/journal/micro/10.1099/mic.0.071761-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error