1887

Abstract

The type III secretion apparatus (T3SA) is used by numerous Gram-negative pathogens to inject virulence factors into eukaryotic cells. The T3SA spans the bacterial envelope and its assembly requires the products of ~20 and genes. Despite progress made in understanding how the T3SA is assembled, the role of several predicted soluble components, such as Spa13, remains elusive. Here, we show that the secretion defect of the mutant is associated with lack of T3SA assembly which is partly due to the instability of the needle component MxiH. In contrast to its counterpart, Spa13 is not a secreted protein. We identified a network of interactions between Spa13 and the ATPase Spa47, the C-ring protein Spa33, and the inner-membrane protein Spa40. Moreover, we revealed a Spa13 interaction with the inner-membrane MxiA and showed that overexpression of the large cytoplasmic domain of MxiA in the WT background shuts off secretion. Lastly, we demonstrated that Spa13 interacts with the cleaved form of Spa40 and with the translocator chaperone IpgC, suggesting that Spa13 intervenes during the secretion hierarchy switch process. Collectively, our results support a dual role of Spa13 as a chaperone escort and as an export gate-activator switch.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071712-0
2014-01-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/130.html?itemId=/content/journal/micro/10.1099/mic.0.071712-0&mimeType=html&fmt=ahah

References

  1. Abrusci P., Vergara-Irigaray M., Johnson S., Beeby M. D., Hendrixson D. R., Roversi P., Friede M. E., Deane J. E., Jensen G. J.. & other authors ( 2013;). Architecture of the major component of the type III secretion system export apparatus. Nat Struct Mol Biol20:99–104 [CrossRef][PubMed]
    [Google Scholar]
  2. Aizawa S. I.. ( 2001;). Bacterial flagella and type III secretion systems. FEMS Microbiol Lett202:157–164 [CrossRef][PubMed]
    [Google Scholar]
  3. Allaoui A., Mounier J., Prévost M. C., Sansonetti P. J., Parsot C.. ( 1992;). icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread. Mol Microbiol6:1605–1616 [CrossRef][PubMed]
    [Google Scholar]
  4. Auvray F., Ozin A. J., Claret L., Hughes C.. ( 2002;). Intrinsic membrane targeting of the flagellar export ATPase FliI: interaction with acidic phospholipids and FliH. J Mol Biol318:941–950 [CrossRef][PubMed]
    [Google Scholar]
  5. Bennett J. C., Hughes C.. ( 2000;). From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol8:202–204 [CrossRef][PubMed]
    [Google Scholar]
  6. Bergman T., Erickson K., Galyov E., Persson C., Wolf-Watz H.. ( 1994;). The lcrB (yscN/U) gene cluster of Yersinia pseudotuberculosis is involved in Yop secretion and shows high homology to the spa gene clusters of Shigella flexneri and Salmonella typhimurium . J Bacteriol176:2619–2626[PubMed]
    [Google Scholar]
  7. Blocker A., Jouihri N., Larquet E., Gounon P., Ebel F., Parsot C., Sansonetti P., Allaoui A.. ( 2001;). Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol Microbiol39:652–663 [CrossRef][PubMed]
    [Google Scholar]
  8. Blocker A., Komoriya K., Aizawa S.. ( 2003;). Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc Natl Acad Sci U S A100:3027–3030 [CrossRef][PubMed]
    [Google Scholar]
  9. Botteaux A., Sani M., Kayath C. A., Boekema E. J., Allaoui A.. ( 2008;). Spa32 interaction with the inner-membrane Spa40 component of the type III secretion system of Shigella flexneri is required for the control of the needle length by a molecular tape measure mechanism. Mol Microbiol70:1515–1528 [CrossRef][PubMed]
    [Google Scholar]
  10. Botteaux A., Sory M. P., Biskri L., Parsot C., Allaoui A.. ( 2009;). MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol Microbiol71:449–460 [CrossRef][PubMed]
    [Google Scholar]
  11. Botteaux A., Kayath C. A., Page A. L., Jouihri N., Sani M., Boekema E., Biskri L., Parsot C., Allaoui A.. ( 2010;). The 33 carboxyl-terminal residues of Spa40 orchestrate the multi-step assembly process of the type III secretion needle complex in Shigella flexneri. . Microbiology156:2807–2817 [CrossRef][PubMed]
    [Google Scholar]
  12. Buchrieser C., Glaser P., Rusniok C., Nedjari H., D'Hauteville H., Kunst F., Sansonetti P., Parsot C.. ( 2000;). The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri . Mol Microbiol38:760–771 [CrossRef][PubMed]
    [Google Scholar]
  13. Cherradi Y., Schiavolin L., Moussa S., Meghraoui A., Meksem A., Biskri L., Azarkan M., Allaoui A., Botteaux A.. ( 2013;). Interplay between predicted inner-rod and gatekeeper in controlling substrate specificity of the type III secretion system. Mol Microbiol87:1183–1199 [CrossRef][PubMed]
    [Google Scholar]
  14. Collazo C. M., Zierler M. K., Gatan J. E.. ( 1995;). Functional analysis of the Salmonella typhimurium invasion genes invl and invJ and identification of a target of the protein secretion apparatus encoded in the inv locus. Mol Microbiol15:25–38 [CrossRef][PubMed]
    [Google Scholar]
  15. Cornelis G. R.. ( 2006;). The type III secretion injectisome. Nat Rev Microbiol4:811–825 [CrossRef][PubMed]
    [Google Scholar]
  16. Diepold A., Wiesand U., Amstutz M., Cornelis G. R.. ( 2012;). Assembly of the Yersinia injectisome: the missing pieces. Mol Microbiol85:878–892 [CrossRef][PubMed]
    [Google Scholar]
  17. Erhardt M., Singer H. M., Wee D. H., Keener J. P., Hughes K. T.. ( 2011;). An infrequent molecular ruler controls flagellar hook length in Salmonella enterica . EMBO J30:2948–2961 [CrossRef][PubMed]
    [Google Scholar]
  18. Espina M., Olive A. J., Kenjale R., Moore D. S., Ausar S. F., Kaminski R. W., Oaks E. V., Middaugh C. R., Picking W. D., Picking W. L.. ( 2006;). IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri . Infect Immun74:4391–4400 [CrossRef][PubMed]
    [Google Scholar]
  19. Evans L. D., Hughes C.. ( 2009;). Selective binding of virulence type III export chaperones by FliJ escort orthologues InvI and YscO. FEMS Microbiol Lett293:292–297 [CrossRef][PubMed]
    [Google Scholar]
  20. Evans L. D., Stafford G. P., Ahmed S., Fraser G. M., Hughes C.. ( 2006;). An escort mechanism for cycling of export chaperones during flagellum assembly. Proc Natl Acad Sci U S A103:17474–17479 [CrossRef][PubMed]
    [Google Scholar]
  21. Fraser G. M., González-Pedrajo B., Tame J. R., Macnab R. M.. ( 2003;). Interactions of FliJ with the Salmonella type III flagellar export apparatus. J Bacteriol185:5546–5554 [CrossRef][PubMed]
    [Google Scholar]
  22. Galán J. E., Wolf-Watz H.. ( 2006;). Protein delivery into eukaryotic cells by type III secretion machines. Nature444:567–573 [CrossRef][PubMed]
    [Google Scholar]
  23. González-Pedrajo B., Minamino T., Kihara M., Namba K.. ( 2006;). Interactions between C ring proteins and export apparatus components: a possible mechanism for facilitating type III protein export. Mol Microbiol60:984–998 [CrossRef][PubMed]
    [Google Scholar]
  24. Herrmann M., Schuhmacher A., Mühldorfer I., Melchers K., Prothmann C., Dammeier S.. ( 2006;). Identification and characterization of secreted effector proteins of Chlamydophila pneumoniae TW183. Res Microbiol157:513–524 [CrossRef][PubMed]
    [Google Scholar]
  25. Hueck C. J.. ( 1998;). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev62:379–433[PubMed]
    [Google Scholar]
  26. Ibuki T., Imada K., Minamino T., Kato T., Miyata T., Namba K.. ( 2011;). Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat Struct Mol Biol18:277–282 [CrossRef][PubMed]
    [Google Scholar]
  27. Ibuki T., Uchida Y., Hironaka Y., Namba K., Imada K., Minamino T.. ( 2013;). Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus. J Bacteriol195:466–473 [CrossRef][PubMed]
    [Google Scholar]
  28. Imada K., Minamino T., Kinoshita M., Furukawa Y., Namba K.. ( 2010;). Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners. Proc Natl Acad Sci U S A107:8812–8817 [CrossRef][PubMed]
    [Google Scholar]
  29. Jouihri N., Sory M. P., Page A. L., Gounon P., Parsot C., Allaoui A.. ( 2003;). MxiK and MxiN interact with the Spa47 ATPase and are required for transit of the needle components MxiH and MxiI, but not of Ipa proteins, through the type III secretion apparatus of Shigella flexneri . Mol Microbiol49:755–767 [CrossRef][PubMed]
    [Google Scholar]
  30. Journet L., Agrain C., Broz P., Cornelis G. R.. ( 2003;). The needle length of bacterial injectisomes is determined by a molecular ruler. Science302:1757–1760 [CrossRef][PubMed]
    [Google Scholar]
  31. Kim P. S., Berger B., Wolf E.. ( 1997;). MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci6:1179–1189 [CrossRef][PubMed]
    [Google Scholar]
  32. Kotloff K. L., Winickoff J. P., Ivanoff B., Clemens J. D., Swerdlow D. L., Sansonetti P. J., Adak G. K., Levine M. M.. ( 1999;). Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ77:651–666[PubMed]
    [Google Scholar]
  33. Kubori T., Matsushima Y., Nakamura D., Uralil J., Lara-Tejero M., Sukhan A., Galán J. E., Aizawa S. I.. ( 1998;). Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science280:602–605 [CrossRef][PubMed]
    [Google Scholar]
  34. Lorenzini E., Singer A., Singh B., Lam R., Skarina T., Chirgadze N. Y., Savchenko A., Gupta R. S.. ( 2010;). Structure and protein–protein interaction studies on Chlamydia trachomatis protein CT670 (YscO homolog). J Bacteriol192:2746–2756 [CrossRef][PubMed]
    [Google Scholar]
  35. Macnab R. M.. ( 1999;). The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol181:7149–7153[PubMed]
    [Google Scholar]
  36. Macnab R. M.. ( 2004;). Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta1694:207–217 [CrossRef][PubMed]
    [Google Scholar]
  37. Magdalena J., Hachani A., Chamekh M., Jouihri N., Gounon P., Blocker A., Allaoui A.. ( 2002;). Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. J Bacteriol184:3433–3441 [CrossRef][PubMed]
    [Google Scholar]
  38. McDonnell A. V., Jiang T., Keating A. E., Berger B.. ( 2006;). Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics22:356–358 [CrossRef][PubMed]
    [Google Scholar]
  39. Meitert T., Pencu E., Ciudin L., Tonciu M., Mihai I., Nicolescu S.. ( 1991;). Correlation between Congo red binding as virulence marker in Shigella species and Sereny test. Roum Arch Microbiol Immunol50:45–52[PubMed]
    [Google Scholar]
  40. Miller V. L., Mekalanos J. J.. ( 1988;). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol170:2575–2583[PubMed]
    [Google Scholar]
  41. Minamino T., Macnab R. M.. ( 2000;). Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol Microbiol35:1052–1064 [CrossRef][PubMed]
    [Google Scholar]
  42. Minamino T., Chu R., Yamaguchi S., Macnab R. M.. ( 2000;). Role of FliJ in flagellar protein export in Salmonella . J Bacteriol182:4207–4215 [CrossRef][PubMed]
    [Google Scholar]
  43. Minamino T., Imada K., Namba K.. ( 2008;). Mechanisms of type III protein export for bacterial flagellar assembly. Mol Biosyst4:1105–1115 [CrossRef][PubMed]
    [Google Scholar]
  44. Minamino T., Morimoto Y. V., Hara N., Namba K.. ( 2011;). An energy transduction mechanism used in bacterial flagellar type III protein export. Nat Commun2:475 [CrossRef][PubMed]
    [Google Scholar]
  45. Morita-Ishihara T., Ogawa M., Sagara H., Yoshida M., Katayama E., Sasakawa C.. ( 2006;). Shigella Spa33 is an essential C-ring component of type III secretion machinery. J Biol Chem281:599–607 [CrossRef][PubMed]
    [Google Scholar]
  46. Mukerjea R., Ghosh P.. ( 2013;). Functionally essential interaction between Yersinia YscO and the T3S4 domain of YscP. J Bacteriol195:4631–4638 [CrossRef][PubMed]
    [Google Scholar]
  47. Parsot C.. ( 2009;). Shigella type III secretion effectors: how, where, when, for what purposes. Curr Opin Microbiol12:110–116 [CrossRef][PubMed]
    [Google Scholar]
  48. Payne P. L., Straley S. C.. ( 1998;). YscO of Yersinia pestis is a mobile core component of the Yop secretion system. J Bacteriol180:3882–3890[PubMed]
    [Google Scholar]
  49. Payne P. L., Straley S. C.. ( 1999;). YscP of Yersinia pestis is a secreted component of the Yop secretion system. J Bacteriol181:2852–2862[PubMed]
    [Google Scholar]
  50. Penno C., Parsot C.. ( 2006;). Transcriptional slippage in mxiE controls transcription and translation of the downstream mxiD gene, which encodes a component of the Shigella flexneri type III secretion apparatus. J Bacteriol188:1191–1198[PubMed][CrossRef]
    [Google Scholar]
  51. Penno C., Hachani A., Biskri L., Sansonetti P., Allaoui A., Parsot C.. ( 2006;). Transcriptional slippage controls production of type III secretion apparatus components in Shigella flexneri . Mol Microbiol62:1460–1468 [CrossRef][PubMed]
    [Google Scholar]
  52. Riordan K. E., Schneewind O.. ( 2008;). YscU cleavage and the assembly of Yersinia type III secretion machine complexes. Mol Microbiol68:1485–1501 [CrossRef][PubMed]
    [Google Scholar]
  53. Riordan K. E., Sorg J. A., Berube B. J., Schneewind O.. ( 2008;). Impassable YscP substrates and their impact on the Yersinia enterocolitica type III secretion pathway. J Bacteriol190:6204–6216 [CrossRef][PubMed]
    [Google Scholar]
  54. Saijo-Hamano Y., Imada K., Minamino T., Kihara M., Shimada M., Kitao A., Namba K.. ( 2010;). Structure of the cytoplasmic domain of FlhA and implication for flagellar type III protein export. Mol Microbiol76:260–268 [CrossRef][PubMed]
    [Google Scholar]
  55. Samudrala R., Heffron F., McDermott J. E.. ( 2009;). Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog5:e1000375 [CrossRef][PubMed]
    [Google Scholar]
  56. Sani M., Botteaux A., Parsot C., Sansonetti P., Boekema E. J., Allaoui A.. ( 2007;). IpaD is localized at the tip of the Shigella flexneri type III secretion apparatus. Biochim Biophys Acta1770:307–311 [CrossRef][PubMed]
    [Google Scholar]
  57. Sasakawa C., Komatsu K., Tobe T., Suzuki T., Yoshikawa M.. ( 1993;). Eight genes in region 5 that form an operon are essential for invasion of epithelial cells by Shigella flexneri 2a. J Bacteriol175:2334–2346[PubMed]
    [Google Scholar]
  58. Schroeder G. N., Hilbi H.. ( 2008;). Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev21:134–156 [CrossRef][PubMed]
    [Google Scholar]
  59. Schuch R., Maurelli A. T.. ( 2001;). Spa33, a cell surface-associated subunit of the Mxi-Spa type III secretory pathway of Shigella flexneri, regulates Ipa protein traffic. Infect Immun69:2180–2189 [CrossRef][PubMed]
    [Google Scholar]
  60. Shibata S., Takahashi N., Chevance F. F., Karlinsey J. E., Hughes K. T., Aizawa S.. ( 2007;). FliK regulates flagellar hook length as an internal ruler. Mol Microbiol64:1404–1415 [CrossRef][PubMed]
    [Google Scholar]
  61. Stone C. B., Johnson D. L., Bulir D. C., Gilchrist J. D., Mahony J. B.. ( 2008;). Characterization of the putative type III secretion ATPase CdsN (Cpn0707) of Chlamydophila pneumoniae . J Bacteriol190:6580–6588 [CrossRef][PubMed]
    [Google Scholar]
  62. Wagner S., Stenta M., Metzger L. C., Dal Peraro M., Cornelis G. R.. ( 2010;). Length control of the injectisome needle requires only one molecule of Yop secretion protein P (YscP). Proc Natl Acad Sci U S A107:13860–13865 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071712-0
Loading
/content/journal/micro/10.1099/mic.0.071712-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error