1887

Abstract

is a Gram-positive bacterium that is indigenous to the oral cavity. , a primary colonizer of the oral cavity, serves as a tether for the attachment of other oral pathogens. The colonization of microbes on the tooth surface forms dental plaque, which can lead to the onset of periodontal disease. We examined a comprehensive mutant library to identify genes related to cellular chain length and morphology using phase-contrast microscopy. A number of hypothetical genes related to the cellular chain length were identified in this study. Genes related to the cellular chain length were analysed along with clusters of orthologous groups (COG) for gene functions. It was discovered that the highest proportion of COG functions related to cellular chain length was ‘cell division and chromosome separation’. However, different COG functions were also found to be related with altered cellular chain length. This suggested that different genes related with multiple mechanisms contribute to the cellular chain length in SK36.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071688-0
2014-02-01
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/2/307.html?itemId=/content/journal/micro/10.1099/mic.0.071688-0&mimeType=html&fmt=ahah

References

  1. Ahmed R., Hassall T., Morland B., Gray J.. ( 2003;). Viridans streptococcus bacteremia in children on chemotherapy for cancer: an underestimated problem. Pediatr Hematol Oncol20:439–444[PubMed][CrossRef]
    [Google Scholar]
  2. Cefalo A. D., Broadbent J. R., Welker D. L.. ( 2011;). Protein-protein interactions among the components of the biosynthetic machinery responsible for exopolysaccharide production in Streptococcus thermophilus MR-1C. J Appl Microbiol110:801–812 [CrossRef][PubMed]
    [Google Scholar]
  3. Chen L., Ge X., Dou Y., Wang X., Patel J. R., Xu P.. ( 2011;). Identification of hydrogen peroxide production-related genes in Streptococcus sanguinis and their functional relationship with pyruvate oxidase. Microbiology157:13–20 [CrossRef][PubMed]
    [Google Scholar]
  4. Dalia A. B., Weiser J. N.. ( 2011;). Minimization of bacterial size allows for complement evasion and is overcome by the agglutinating effect of antibody. Cell Host Microbe10:486–496 [CrossRef][PubMed]
    [Google Scholar]
  5. Henriques M. X., Rodrigues T., Carido M., Ferreira L., Filipe S. R.. ( 2011;). Synthesis of capsular polysaccharide at the division septum of Streptococcus pneumoniae is dependent on a bacterial tyrosine kinase. Mol Microbiol82:515–534 [CrossRef][PubMed]
    [Google Scholar]
  6. Higgins M. L., Pooley H. M., Shockman G. D.. ( 1970;). Site of initiation of cellular autolysis in Streptococcus faecalis as seen by electron microscopy. J Bacteriol103:504–512[PubMed]
    [Google Scholar]
  7. Jensen S. O., Thompson L. S., Harry E. J.. ( 2005;). Cell division in Bacillus subtilis: FtsZ and FtsA association is Z-ring independent, and FtsA is required for efficient midcell Z-ring assembly. J Bacteriol187:6536–6544 [CrossRef][PubMed]
    [Google Scholar]
  8. Kilian M., Holmgren K.. ( 1981;). Ecology and nature of immunoglobulin A1 protease-producing streptococci in the human oral cavity and pharynx. Infect Immun31:868–873[PubMed]
    [Google Scholar]
  9. Kilian M., Mikkelsen L., Henrichsen J.. ( 1989;). Taxonomic study of viridans streptococci: description of Streptococcus gordonii sp. nov. and emended descriptions of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Horder 1906). Int J Syst Bacteriol39:471–484 [CrossRef]
    [Google Scholar]
  10. Kolenbrander P. E.. ( 2000;). Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol54:413–437 [CrossRef][PubMed]
    [Google Scholar]
  11. Kolenbrander P. E., London J.. ( 1993;). Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol175:3247–3252[PubMed]
    [Google Scholar]
  12. Lara B., Rico A. I., Petruzzelli S., Santona A., Dumas J., Biton J., Vicente M., Mingorance J., Massidda O.. ( 2005;). Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Mol Microbiol55:699–711 [CrossRef][PubMed]
    [Google Scholar]
  13. Luo F., Lizano S., Banik S., Zhang H., Bessen D. E.. ( 2008;). Role of Mga in group A streptococcal infection at the skin epithelium. Microb Pathog45:217–224 [CrossRef][PubMed]
    [Google Scholar]
  14. Murchison H., Larrimore S., Hull S., Curtiss R. III. ( 1982;). Isolation and characterization of Streptococcus mutans mutants with altered cellular morphology or chain length. Infect Immun38:282–291[PubMed]
    [Google Scholar]
  15. Nakano K., Fujita K., Nishimura K., Nomura R., Ooshima T.. ( 2005;). Contribution of biofilm regulatory protein A of Streptococcus mutans to systemic virulence. Microbes Infect7:1246–1255 [CrossRef][PubMed]
    [Google Scholar]
  16. Sand O., Gingras M., Beck N., Hall C., Trun N.. ( 2003;). Phenotypic characterization of overexpression or deletion of the Escherichia coli crcA, cspE and crcB genes. Microbiology149:2107–2117 [CrossRef][PubMed]
    [Google Scholar]
  17. Socransky S. S., Manganiello A. D., Propas D., Oram V., Van Houte J.. ( 1977;). Bacteriological studies of developing supragingival dental plaque. J Periodontal Res12:90–106 [CrossRef][PubMed]
    [Google Scholar]
  18. Szwedziak P., Wang Q., Freund S. M., Löwe J.. ( 2012;). FtsA forms actin-like protofilaments. EMBO J31:2249–2260 [CrossRef][PubMed]
    [Google Scholar]
  19. Tatusov R. L., Natale D. A., Garkavtsev I. V., Tatusova T. A., Shankavaram U. T., Rao B. S., Kiryutin B., Galperin M. Y., Fedorova N. D., Koonin E. V.. ( 2001;). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res29:22–28 [CrossRef][PubMed]
    [Google Scholar]
  20. Thibodeau E. A., Ford C. M.. ( 1991;). Chain formation and de-chaining in Streptococcus sobrinus SL-1. Oral Microbiol Immunol6:313–315 [CrossRef][PubMed]
    [Google Scholar]
  21. Truper H., De’clari L.. ( 1997;). Taxonomic note: necessary corrections of specific epithets formed as substantives (nouns) “in apposition”. Int J Syst Bacteriol47:908–909 [CrossRef]
    [Google Scholar]
  22. Turner L. S., Kanamoto T., Unoki T., Munro C. L., Wu H., Kitten T.. ( 2009;). Comprehensive evaluation of Streptococcus sanguinis cell wall-anchored proteins in early infective endocarditis. Infect Immun77:4966–4975 [CrossRef][PubMed]
    [Google Scholar]
  23. Wang H. C., Gayda R. C.. ( 1990;). High-level expression of the FtsA protein inhibits cell septation in Escherichia coli K-12. J Bacteriol172:4736–4740[PubMed]
    [Google Scholar]
  24. Wen Z. T., Burne R. A.. ( 2002;). Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans . Appl Environ Microbiol68:1196–1203 [CrossRef][PubMed]
    [Google Scholar]
  25. Xu P., Alves J. M., Kitten T., Brown A., Chen Z., Ozaki L. S., Manque P., Ge X., Serrano M. G.. & other authors ( 2007;). Genome of the opportunistic pathogen Streptococcus sanguinis . J Bacteriol189:3166–3175 [CrossRef][PubMed]
    [Google Scholar]
  26. Xu P., Ge X., Chen L., Wang X., Dou Y., Xu J. Z., Patel J. R., Stone V., Trinh M.. & other authors ( 2011;). Genome-wide essential gene identification in Streptococcus sanguinis. . Sci Rep1:125 [CrossRef][PubMed]
    [Google Scholar]
  27. Zapun A., Vernet T., Pinho M. G.. ( 2008;). The different shapes of cocci. FEMS Microbiol Rev32:345–360 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071688-0
Loading
/content/journal/micro/10.1099/mic.0.071688-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error