1887

Abstract

NADP-dependent glutamate dehydrogenase (NADP-GDH) is a key enzyme in the assimilation of alternative nitrogen nutrient sources through ammonium in fungi. In , NADP-GDH is encoded by . Several transcription factors are known to regulate expression, including AreA, the major transcription activator of nitrogen metabolic genes, and TamA, a co-activator of AreA. TamA also interacts with LeuB, the regulator of leucine biosynthesis. We have investigated the effects of leucine biosynthesis on regulation, and found that leucine regulates the levels of NADP-GDH activity and expression. We show, using mutants with perturbed levels of α-isopropylmalate (α-IPM), that this leucine biosynthesis intermediate affects regulation. Leucine regulation of requires a functional LeuB with an intact Zn(II)2Cys6 DNA-binding domain. By analysing the prevalence of putative LeuB DNA-binding sites in promoters of orthologues we predict broad conservation of leucine regulation of NADP-GDH expression within ascomycetes except in the fusaria and fission yeasts. Using promoter mutations in reporter genes we identified two sites of action for LeuB within the promoter. These two sites lack sequence identity, with one site conforming to the predicted LeuB DNA-binding site consensus motif, whereas the second site is a novel regulatory sequence element conserved in promoters. These data suggest that LeuB regulates NADP-GDH expression in response to leucine levels, which may act as an important sensor of nitrogen availability.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071514-0
2013-12-01
2021-02-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2467.html?itemId=/content/journal/micro/10.1099/mic.0.071514-0&mimeType=html&fmt=ahah

References

  1. Andrianopoulos A., Hynes M. J..( 1988;). Cloning and analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Cell Biol8:3532–3541[PubMed]
    [Google Scholar]
  2. Andrianopoulos A., Kourambas S., Sharp J. A., Davis M. A., Hynes M. J..( 1998;). Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J Bacteriol180:1973–1977[PubMed]
    [Google Scholar]
  3. Arnaud M. B., Cerqueira G. C., Inglis D. O., Skrzypek M. S., Binkley J., Chibucos M. C., Crabtree J., Howarth C., Orvis J..& other authors ( 2012;). The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res40:Database issueD653–D659 [CrossRef][PubMed]
    [Google Scholar]
  4. Arst H. N. Jr, MacDonald D. W..( 1973;). A mutant of Asperigillus nidulans lacking NADP-linked glutamate dehydrogenase. Mol Gen Genet122:261–265 [CrossRef][PubMed]
    [Google Scholar]
  5. Arst H. N. Jr, Parbtani A. A., Cove D. J..( 1975;). A mutant of Aspergillus nidulans defective in NAD-linked glutamate dehydrogenase. Mol Gen Genet138:164–171[PubMed]
    [Google Scholar]
  6. Avendaño A., Deluna A., Olivera H., Valenzuela L., Gonzalez A..( 1997;). GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J Bacteriol179:5594–5597[PubMed]
    [Google Scholar]
  7. Avendaño A., Riego L., DeLuna A., Aranda C., Romero G., Ishida C., Vázquez-Acevedo M., Rodarte B., Recillas-Targa F..& other authors ( 2005;). Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae. Mol Microbiol57:291–305 [CrossRef][PubMed]
    [Google Scholar]
  8. Bai Y. L., Kohlhaw G. B..( 1991;). Manipulation of the ‘zinc cluster’ region of transcriptional activator LEU3 by site-directed mutagenesis. Nucleic Acids Res19:5991–5997 [CrossRef][PubMed]
    [Google Scholar]
  9. Baichwal V. R., Cunningham T. S., Gatzek P. R., Kohlhaw G. B..( 1983;). Leucine biosynthesis in yeast. Curr Genet7:369–377 [CrossRef]
    [Google Scholar]
  10. Berger H., Basheer A., Böck S., Reyes-Dominguez Y., Dalik T., Altmann F., Strauss J..( 2008;). Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Mol Microbiol69:1385–1398 [CrossRef][PubMed]
    [Google Scholar]
  11. Bradford M. M..( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  12. Caddick M. X., Jones M. G., van Tonder J. M., Le Cordier H., Narendja F., Strauss J., Morozov I. Y..( 2006;). Opposing signals differentially regulate transcript stability in Aspergillus nidulans. Mol Microbiol62:509–519 [CrossRef][PubMed]
    [Google Scholar]
  13. Cardoza R. E., Moralejo F. J., Gutiérrez S., Casqueiro J., Fierro F., Martín J. F..( 1998;). Characterization and nitrogen-source regulation at the transcriptional level of the gdhA gene of Aspergillus awamori encoding an NADP-dependent glutamate dehydrogenase. Curr Genet34:50–59 [CrossRef][PubMed]
    [Google Scholar]
  14. Casalone E., Barberio C., Cavalieri D., Polsinelli M..( 2000;). Identification by functional analysis of the gene encoding α-isopropylmalate synthase II (LEU9) in Saccharomyces cerevisiae. Yeast16:539–545 [CrossRef][PubMed]
    [Google Scholar]
  15. Cavalieri D., Casalone E., Bendoni B., Fia G., Polsinelli M., Barberio C..( 1999;). Trifluoroleucine resistance and regulation of alpha-isopropyl malate synthase in Saccharomyces cerevisiae. Mol Gen Genet261:152–160 [CrossRef][PubMed]
    [Google Scholar]
  16. Chang L. F., Cunningham T. S., Gatzek P. R., Chen W. J., Kohlhaw G. B..( 1984;). Cloning and characterization of yeast Leu4, one of two genes responsible for alpha-isopropylmalate synthesis. Genetics108:91–106[PubMed]
    [Google Scholar]
  17. Chang L. F., Gatzek P. R., Kohlhaw G. B..( 1985;). Total deletion of yeast LEU4: further evidence for a second alpha-isopropylmalate synthase and evidence for tight LEU4-MET4 linkage. Gene33:333–339 [CrossRef][PubMed]
    [Google Scholar]
  18. Chen H., Kinsey J. A..( 1994;). Sequential gel mobility shift scanning of 5′ upstream sequences of the Neurospora crassa am (GDH) gene. Mol Gen Genet242:399–403 [CrossRef][PubMed]
    [Google Scholar]
  19. Chen H., Crabb J. W., Kinsey J. A..( 1998;). The Neurospora aab-1 gene encodes a CCAAT binding protein homologous to yeast HAP5.. Genetics148:123–130[PubMed]
    [Google Scholar]
  20. Cherry J. M., Hong E. L., Amundsen C., Balakrishnan R., Binkley G., Chan E. T., Christie K. R., Costanzo M. C., Dwight S. S..& other authors ( 2012;). Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res40:Database issueD700–D705 [CrossRef][PubMed]
    [Google Scholar]
  21. Christensen T., Hynes M. J., Davis M. A..( 1998;). Role of the regulatory gene areA of Aspergillus oryzae in nitrogen metabolism. Appl Environ Microbiol64:3232–3237[PubMed]
    [Google Scholar]
  22. Clutterbuck A. J..( 1974;). Aspergillus nidulans genetics. Handbook of Geneticsvol. 1447–510 King R. C.. New York: Plenum Press;
    [Google Scholar]
  23. Cove D. J..( 1966;). The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta113:51–56 [CrossRef][PubMed]
    [Google Scholar]
  24. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E..( 2004;). WebLogo: a sequence logo generator. Genome Res14:1188–1190 [CrossRef][PubMed]
    [Google Scholar]
  25. Dang V. D., Bohn C., Bolotin-Fukuhara M., Daignan-Fornier B..( 1996;). The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol178:1842–1849[PubMed]
    [Google Scholar]
  26. Dantzig A. H., Wiegmann F. L. Jr, Nason A..( 1979;). Regulation of glutamate dehydrogenases in nit-2 and am mutants of Neurospora crassa. J Bacteriol137:1333–1339[PubMed]
    [Google Scholar]
  27. Daugherty J. R., Rai R., el Berry H. M., Cooper T. G..( 1993;). Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. J Bacteriol175:64–73[PubMed]
    [Google Scholar]
  28. Davis M. A., Cobbett C. S., Hynes M. J..( 1988;). An amdS-lacZ fusion for studying gene regulation in Aspergillus. Gene63:199–212 [CrossRef][PubMed]
    [Google Scholar]
  29. Davis M. A., Small A. J., Kourambas S., Hynes M. J..( 1996;). The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function. J Bacteriol178:3406–3409[PubMed]
    [Google Scholar]
  30. DeLuna A., Avendano A., Riego L., Gonzalez A..( 2001;). NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem276:43775–43783 [CrossRef][PubMed]
    [Google Scholar]
  31. Fincham J. R..( 1988;). The Neurospora am gene and allelic complementation. Bioessays9:169–172 [CrossRef][PubMed]
    [Google Scholar]
  32. Fincham J. R., Baron A. J..( 1977;). The molecular basis of an osmotically reparable mutant of Neurospora crassa producing unstable glutamate dehydrogenase. J Mol Biol110:627–642 [CrossRef][PubMed]
    [Google Scholar]
  33. Fincham J. R., Kinsey J. A., Fuentes A. M., Cummings N. J., Connerton I. F..( 2000;). The Neurospora am gene and NADP-specific glutamate dehydrogenase: mutational sequence changes and functional effects – more mutants and a summary. Genet Res76:1–10 [CrossRef][PubMed]
    [Google Scholar]
  34. Frederick G. D., Kinsey J. A..( 1990a;). Nucleotide sequence and nuclear protein binding of the two regulatory sequences upstream of the am (GDH) gene in Neurospora. Mol Gen Genet221:148–154 [CrossRef][PubMed]
    [Google Scholar]
  35. Frederick G. D., Kinsey J. A..( 1990b;). Distant upstream regulatory sequences control the level of expression of the am (GDH) locus of Neurospora crassa.. Curr Genet18:53–58 [CrossRef][PubMed]
    [Google Scholar]
  36. Friden P., Schimmel P..( 1988;). LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence. Mol Cell Biol8:2690–2697[PubMed]
    [Google Scholar]
  37. Gurr S. J., Hawkins A. R., Drainas C., Kinghorn J. R..( 1986;). Isolation and identification of the Aspergillus nidulans gdhA gene encoding NADP-linked glutamate dehydrogenase. Curr Genet10:761–766 [CrossRef][PubMed]
    [Google Scholar]
  38. Hawkins A. R., Gurr S. J., Montague P., Kinghorn J. R..( 1989;). Nucleotide sequence and regulation of expression of the Aspergillus nidulans gdhA gene encoding NADP dependent glutamate dehydrogenase. Mol Gen Genet218:105–111 [CrossRef][PubMed]
    [Google Scholar]
  39. Hellauer K., Rochon M. H., Turcotte B..( 1996;). A novel DNA binding motif for yeast zinc cluster proteins: the Leu3p and Pdr3p transcriptional activators recognize everted repeats. Mol Cell Biol16:6096–6102[PubMed]
    [Google Scholar]
  40. Hernández H., Aranda C., López G., Riego L., González A..( 2011;). Hap2-3-5-Gln3 determine transcriptional activation of GDH1 and ASN1 under repressive nitrogen conditions in the yeast Saccharomyces cerevisiae. Microbiology157:879–889 [CrossRef][PubMed]
    [Google Scholar]
  41. Hinnebusch A. G..( 1988;). Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev52:248–273[PubMed]
    [Google Scholar]
  42. Hu Y., Cooper T. G., Kohlhaw G. B..( 1995;). The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation. Mol Cell Biol15:52–57[PubMed]
    [Google Scholar]
  43. Hynes M. J..( 1974;). Effects of ammonium, L-glutamate, and L-glutamine on nitrogen catabolism in Aspergillus nidulans. J Bacteriol120:1116–1123[PubMed]
    [Google Scholar]
  44. Hynes M. J., Murray S. L., Duncan A., Khew G. S., Davis M. A..( 2006;). Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans. Eukaryot Cell5:794–805 [CrossRef][PubMed]
    [Google Scholar]
  45. Kinghorn J. R., Pateman J. A..( 1973;). NAD and NADP L-glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. J Gen Microbiol78:39–46 [CrossRef][PubMed]
    [Google Scholar]
  46. Kinghorn J. R., Pateman J. A..( 1975;). The structural gene for NADP L-glutamate dehydrogenase in Aspergillus nidulans. J Gen Microbiol86:294–300 [CrossRef][PubMed]
    [Google Scholar]
  47. Kinghorn J. R., Pateman J. A..( 1976;). Mutants of Aspergillus nidulans lacking nicotinamide adenine dinucleotide-specific glutamate dehydrogenase. J Bacteriol125:42–47[PubMed]
    [Google Scholar]
  48. Kinnaird J. H., Fincham J. R..( 1983;). The complete nucleotide sequence of the Neurospora crassa am (NADP-specific glutamate dehydrogenase) gene. Gene26:253–260 [CrossRef][PubMed]
    [Google Scholar]
  49. Kohlhaw G. B..( 2003;). Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev67:1–15 [CrossRef][PubMed]
    [Google Scholar]
  50. Kotaka M., Johnson C., Lamb H. K., Hawkins A. R., Ren J., Stammers D. K..( 2008;). Structural analysis of the recognition of the negative regulator NmrA and DNA by the zinc finger from the GATA-type transcription factor AreA. J Mol Biol381:373–382 [CrossRef][PubMed]
    [Google Scholar]
  51. Lamb H. K., Ren J., Park A., Johnson C., Leslie K., Cocklin S., Thompson P., Mee C., Cooper A..& other authors ( 2004;). Modulation of the ligand binding properties of the transcription repressor NmrA by GATA-containing DNA and site-directed mutagenesis. Protein Sci13:3127–3138 [CrossRef][PubMed]
    [Google Scholar]
  52. Langdon T., Sheerins A., Ravagnani A., Gielkens M., Caddik M. X., Arst H. N. Jr.( 1995;). Mutational analysis reveals dispensability of the N-terminal region of the Aspergillus transcription factor mediating nitrogen metabolite repression. Mol Microbiol17:877–888 [CrossRef][PubMed]
    [Google Scholar]
  53. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A..& other authors ( 2007;). Clustal W and Clustal X version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  54. Larson E. M., Idnurm A..( 2010;). Two origins for the gene encoding alpha-isopropylmalate synthase in fungi. PLoS ONE5:e11605 [CrossRef][PubMed]
    [Google Scholar]
  55. Lee S. B., Taylor J. W..( 1990;). Isolation of DNA from fungal mycelia and single spores. PCR Protocols: A Guide to Methods and Applications282–287 Innis M. A., Gelfand D. H., Sninsky J. S., White T. J.. San Diego, CA: Academic Press;
    [Google Scholar]
  56. Liang S. D., Marmorstein R., Harrison S. C., Ptashne M..( 1996;). DNA sequence preferences of GAL4 and PPR1: how a subset of Zn2 Cys6 binuclear cluster proteins recognizes DNA. Mol Cell Biol16:3773–3780[PubMed]
    [Google Scholar]
  57. Macheda M. L., Hynes M. J., Davis M. A..( 1999;). The Aspergillus nidulans gltA gene encoding glutamate synthase is required for ammonium assimilation in the absence of NADP-glutamate dehydrogenase. Curr Genet34:467–471 [CrossRef][PubMed]
    [Google Scholar]
  58. MacPherson S., Larochelle M., Turcotte B..( 2006;). A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev70:583–604 [CrossRef][PubMed]
    [Google Scholar]
  59. Mamane Y., Hellauer K., Rochon M. H., Turcotte B..( 1998;). A linker region of the yeast zinc cluster protein Leu3p specifies binding to everted repeat DNA. J Biol Chem273:18556–18561 [CrossRef][PubMed]
    [Google Scholar]
  60. Mamnun Y. M., Pandjaitan R., Mahé Y., Delahodde A., Kuchler K..( 2002;). The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mol Microbiol46:1429–1440 [CrossRef][PubMed]
    [Google Scholar]
  61. Margelis S., D’Souza C., Small A. J., Hynes M. J., Adams T. H., Davis M. A..( 2001;). Role of glutamine synthetase in nitrogen metabolite repression in Aspergillus nidulans. J Bacteriol183:5826–5833 [CrossRef][PubMed]
    [Google Scholar]
  62. Marmorstein R., Carey M., Ptashne M., Harrison S. C..( 1992;). DNA recognition by GAL4: structure of a protein-DNA complex. Nature356:408–414 [CrossRef][PubMed]
    [Google Scholar]
  63. Monahan B. J., Askin M. C., Hynes M. J., Davis M. A..( 2006;). Differential expression of Aspergillus nidulans ammonium permease genes is regulated by GATA transcription factor AreA. Eukaryot Cell5:226–237 [CrossRef][PubMed]
    [Google Scholar]
  64. Morel M., Buée M., Chalot M., Brun A..( 2006;). NADP-dependent glutamate dehydrogenase: a dispensable function in ectomycorrhizal fungi. New Phytol169:179–190 [CrossRef][PubMed]
    [Google Scholar]
  65. Morozov I. Y., Martinez M. G., Jones M. G., Caddick M. X..( 2000;). A defined sequence within the 3′ UTR of the areA transcript is sufficient to mediate nitrogen metabolite signalling via accelerated deadenylation. Mol Microbiol37:1248–1257 [CrossRef][PubMed]
    [Google Scholar]
  66. Morozov I. Y., Galbis-Martinez M., Jones M. G., Caddick M. X..( 2001;). Characterization of nitrogen metabolite signalling in Aspergillus via the regulated degradation of areA mRNA. Mol Microbiol42:269–277 [CrossRef][PubMed]
    [Google Scholar]
  67. Morozov I. Y., Jones M. G., Razak A. A., Rigden D. J., Caddick M. X..( 2010;). CUCU modification of mRNA promotes decapping and transcript degradation in Aspergillus nidulans. Mol Cell Biol30:460–469 [CrossRef][PubMed]
    [Google Scholar]
  68. Nayak T., Szewczyk E., Oakley C. E., Osmani A., Ukil L., Murray S. L., Hynes M. J., Osmani S. A., Oakley B. R..( 2006;). A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics172:1557–1566 [CrossRef][PubMed]
    [Google Scholar]
  69. Noël J., Turcotte B..( 1998;). Zinc cluster proteins Leu3p and Uga3p recognize highly related but distinct DNA targets. J Biol Chem273:17463–17468 [CrossRef][PubMed]
    [Google Scholar]
  70. Papagiannopoulos P., Andrianopoulos A., Sharp J. A., Davis M. A., Hynes M. J..( 1996;). The hapC gene of Aspergillus nidulans is involved in the expression of CCAAT-containing promoters. Mol Gen Genet251:412–421 [CrossRef][PubMed]
    [Google Scholar]
  71. Pateman J. A..( 1969;). Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms. Biochem J115:769–775[PubMed]
    [Google Scholar]
  72. Pateman J. A., Kinghorn J. R., Dunn E., Forbes E..( 1973;). Ammonium regulation in Aspergillus nidulans. J Bacteriol114:943–950[PubMed]
    [Google Scholar]
  73. Platt A., Langdon T., Arst H. N. Jr, Kirk D., Tollervey D., Sanchez J. M., Caddick M. X..( 1996;). Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3′ untranslated region of its mRNA. EMBO J15:2791–2801[PubMed]
    [Google Scholar]
  74. Polotnianka R., Monahan B. J., Hynes M. J., Davis M. A..( 2004;). TamA interacts with LeuB, the homologue of Saccharomyces cerevisiae Leu3p, to regulate gdhA expression in Aspergillus nidulans. Mol Genet Genomics272:452–459 [CrossRef][PubMed]
    [Google Scholar]
  75. Punt P. J., Kuyvenhoven A., van den Hondel C. A..( 1995;). A mini-promoter lacZ gene fusion for the analysis of fungal transcription control sequences. Gene158:119–123 [CrossRef][PubMed]
    [Google Scholar]
  76. Reece R. J., Ptashne M..( 1993;). Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science261:909–911 [CrossRef][PubMed]
    [Google Scholar]
  77. Riego L., Avendaño A., DeLuna A., Rodríguez E., González A..( 2002;). GDH1 expression is regulated by GLN3, GCN4, and HAP4 under respiratory growth. Biochem Biophys Res Commun293:79–85 [CrossRef][PubMed]
    [Google Scholar]
  78. Rottensteiner H., Kal A. J., Hamilton B., Ruis H., Tabak H. F..( 1997;). A heterodimer of the Zn2Cys6 transcription factors Pip2p and Oaf1p controls induction of genes encoding peroxisomal proteins in Saccharomyces cerevisiae.. Eur J Biochem247:776–783 [CrossRef][PubMed]
    [Google Scholar]
  79. Sambrook J., Russell D. W..( 2001;). Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  80. Santos M., Rebordinos L., Gutiérrez S., Cardoza R. E., Martín J. F., Cantoral J. M..( 2001;). Characterization of the gdhA gene from the phytopathogen Botrytis cinerea. Fungal Genet Biol34:193–206 [CrossRef][PubMed]
    [Google Scholar]
  81. Schinko T., Berger H., Lee W., Gallmetzer A., Pirker K., Pachlinger R., Buchner I., Reichenauer T., Güldener U., Strauss J..( 2010;). Transcriptome analysis of nitrate assimilation in Aspergillus nidulans reveals connections to nitric oxide metabolism. Mol Microbiol78:720–738 [CrossRef][PubMed]
    [Google Scholar]
  82. Schjerling P., Holmberg S..( 1996;). Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Res24:4599–4607 [CrossRef][PubMed]
    [Google Scholar]
  83. Schneider T. D., Stephens R. M..( 1990;). Sequence logos: a new way to display consensus sequences. Nucleic Acids Res18:6097–6100 [CrossRef][PubMed]
    [Google Scholar]
  84. Small A. J., Hynes M. J., Davis M. A..( 1999;). The TamA protein fused to a DNA-binding domain can recruit AreA, the major nitrogen regulatory protein, to activate gene expression in Aspergillus nidulans. Genetics153:95–105[PubMed]
    [Google Scholar]
  85. Small A. J., Todd R. B., Zanker M. C., Delimitrou S., Hynes M. J., Davis M. A..( 2001;). Functional analysis of TamA, a coactivator of nitrogen-regulated gene expression in Aspergillus nidulans. Mol Genet Genomics265:636–646 [CrossRef][PubMed]
    [Google Scholar]
  86. Stokes J. L., Gunness M..( 1946;). The amino acid composition of microorganisms. J Bacteriol52:195–207
    [Google Scholar]
  87. Suzuki Y., Murray S. L., Wong K. H., Davis M. A., Hynes M. J..( 2012;). Reprogramming of carbon metabolism by the transcriptional activators AcuK and AcuM in Aspergillus nidulans. Mol Microbiol84:942–964 [CrossRef][PubMed]
    [Google Scholar]
  88. Sze J. Y., Woontner M., Jaehning J. A., Kohlhaw G. B..( 1992;). In vitro transcriptional activation by a metabolic intermediate: activation by Leu3 depends on alpha-isopropylmalate. Science258:1143–1145 [CrossRef][PubMed]
    [Google Scholar]
  89. Tang L., Liu X., Clarke N. D..( 2006;). Inferring direct regulatory targets from expression and genome location analyses: a comparison of transcription factor deletion and overexpression. BMC Genomics7:215 [CrossRef][PubMed]
    [Google Scholar]
  90. Teichert S., Schönig B., Richter S., Tudzynski B..( 2004;). Deletion of the Gibberella fujikuroi glutamine synthetase gene has significant impact on transcriptional control of primary and secondary metabolism. Mol Microbiol53:1661–1675 [CrossRef][PubMed]
    [Google Scholar]
  91. Todd R. B., Andrianopoulos A..( 1997;). Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol21:388–405 [CrossRef][PubMed]
    [Google Scholar]
  92. Todd R. B., Fraser J. A., Wong K. H., Davis M. A., Hynes M. J..( 2005;). Nuclear accumulation of the GATA factor AreA in response to complete nitrogen starvation by regulation of nuclear export. Eukaryot Cell4:1646–1653 [CrossRef][PubMed]
    [Google Scholar]
  93. Todd R. B., Davis M. A., Hynes M. J..( 2007;). Genetic manipulation of Aspergillus nidulans: meiotic progeny for genetic analysis and strain construction. Nat Protoc2:811–821 [CrossRef][PubMed]
    [Google Scholar]
  94. Trzcinska-Danielewicz J., Ishikawa T., Miciałkiewicz A., Fronk J..( 2008;). Yeast transcription factor Oaf1 forms homodimer and induces some oleate-responsive genes in absence of Pip2. Biochem Biophys Res Commun374:763–766 [CrossRef][PubMed]
    [Google Scholar]
  95. Wolfger H., Mahé Y., Parle-McDermott A., Delahodde A., Kuchler K..( 1997;). The yeast ATP binding cassette (ABC) protein genes PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Lett418:269–274 [CrossRef][PubMed]
    [Google Scholar]
  96. Wong K. H., Hynes M. J., Davis M. A..( 2008;). Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot Cell7:917–925 [CrossRef][PubMed]
    [Google Scholar]
  97. Yelton M. M., Hamer J. E., Timberlake W. E..( 1984;). Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci U S A81:1470–1474 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071514-0
Loading
/content/journal/micro/10.1099/mic.0.071514-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error