1887

Abstract

In actinomycetes, two main regulators, the OmpR-like GlnR and the TetR-type AmtR, have been identified as the central regulators for nitrogen metabolism. GlnR-mediated regulation was previously identified in different actinomycetes except for members of the genus , in which AmtR plays a predominant role in nitrogen metabolism. Interestingly, some actinomycetes (e.g. ) harbour both - and -homologous genes in the chromosome. Thus, it will be interesting to determine how these two different types of regulators function together in nitrogen regulation of these strains. In this study, AmtRsav () in , the homologue of AmtR from , was functionally characterized. We showed, by real-time reverse transcription (RT)-PCR (qPCR) in combination with electrophoretic mobility shift assays (EMSAs), that gene cluster encoding a putative amidase, a urea carboxylase and two hypothetical proteins, respectively, and encoding a probable amino acid permease are under the direct control of AmtRsav. Using approaches of comparative analysis combined with site-directed DNA mutagenesis, the AmtRsav binding sites in the respective intergenic regions of / and / were defined. By genome screening coupled with EMSAs, two novel AmtRsav binding sites were identified. Taken together, AmtRsav seems to play a marginal role in regulation of nitrogen metabolism of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071449-0
2013-12-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2571.html?itemId=/content/journal/micro/10.1099/mic.0.071449-0&mimeType=html&fmt=ahah

References

  1. Amon J., Bräu T., Grimrath A., Hänssler E., Hasselt K., Höller M., Jessberger N., Ott L., Szököl J..& other authors ( 2008;). Nitrogen control in Mycobacterium smegmatis: nitrogen-dependent expression of ammonium transport and assimilation proteins depends on the OmpR-type regulator GlnR. J Bacteriol190:7108–7116 [CrossRef][PubMed]
    [Google Scholar]
  2. Amon J., Titgemeyer F., Burkovski A..( 2009;). A genomic view on nitrogen metabolism and nitrogen control in mycobacteria. J Mol Microbiol Biotechnol17:20–29 [CrossRef][PubMed]
    [Google Scholar]
  3. Amon J., Titgemeyer F., Burkovski A..( 2010;). Common patterns – unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol Rev34:588–605[PubMed]
    [Google Scholar]
  4. Beckers G., Strösser J., Hildebrandt U., Kalinowski J., Farwick M., Krämer R., Burkovski A..( 2005;). Regulation of AmtR-controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon. Mol Microbiol58:580–595 [CrossRef][PubMed]
    [Google Scholar]
  5. Burkovski A..( 2003;). I do it my way: regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum. Arch Microbiol179:83–88[PubMed]
    [Google Scholar]
  6. Fedoryshyn M., Welle E., Bechthold A., Luzhetskyy A..( 2008;). Functional expression of the Cre recombinase in actinomycetes. Appl Microbiol Biotechnol78:1065–1070 [CrossRef][PubMed]
    [Google Scholar]
  7. Fink D., Weißschuh N., Reuther J., Wohlleben W., Engels A..( 2002;). Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol46:331–347 [CrossRef][PubMed]
    [Google Scholar]
  8. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F..( 2003;). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A100:1541–1546 [CrossRef][PubMed]
    [Google Scholar]
  9. Herrmann S., Siegl T., Luzhetska M., Petzke L., Jilg C., Welle E., Erb A., Leadlay P. F., Bechthold A., Luzhetskyy A..( 2012;). Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol78:1804–1812 [CrossRef][PubMed]
    [Google Scholar]
  10. Hiard S., Marée R., Colson S., Hoskisson P. A., Titgemeyer F., van Wezel G. P., Joris B., Wehenkel L., Rigali S..( 2007;). PREDetector: a new tool to identify regulatory elements in bacterial genomes. Biochem Biophys Res Commun357:861–864 [CrossRef][PubMed]
    [Google Scholar]
  11. Ikeda H., Omura S..( 1997;). Avermectin biosynthesis. Chem Rev97:2591–2610 [CrossRef][PubMed]
    [Google Scholar]
  12. Jakoby M., Nolden L., Meier-Wagner J., Krämer R., Burkovski A..( 2000;). AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol37:964–977 [CrossRef][PubMed]
    [Google Scholar]
  13. Kanamori T., Kanou N., Atomi H., Imanaka T..( 2004;). Enzymatic characterization of a prokaryotic urea carboxylase. J Bacteriol186:2532–2539 [CrossRef][PubMed]
    [Google Scholar]
  14. Kieser T., Bibb M., Buttner M., Chater K..( 2000;). Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  15. Leftley J. W., Syrett P. J..( 1973;). Urease and ATP : urea amidolyase activity in unicellular algae. J Gen Microbiol77:109–115 [CrossRef]
    [Google Scholar]
  16. Livak K. J., Schmittgen T. D..( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  17. Lu Y., He J., Zhu H., Yu Z., Wang R., Chen Y., Dang F., Zhang W., Yang S., Jiang W..( 2011;). An orphan histidine kinase, OhkA, regulates both secondary metabolism and morphological differentiation in Streptomyces coelicolor. J Bacteriol193:3020–3032 [CrossRef][PubMed]
    [Google Scholar]
  18. Malm S., Tiffert Y., Micklinghoff J., Schultze S., Joost I., Weber I., Horst S., Ackermann B., Schmidt M..& other authors ( 2009;). The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology155:1332–1339 [CrossRef][PubMed]
    [Google Scholar]
  19. Okamoto S., Ochi K..( 1998;). An essential GTP-binding protein functions as a regulator for differentiation in Streptomyces coelicolor. Mol Microbiol30:107–119 [CrossRef][PubMed]
    [Google Scholar]
  20. Okamoto S., Itoh M., Ochi K..( 1997;). Molecular cloning and characterization of the obg gene of Streptomyces griseus in relation to the onset of morphological differentiation. J Bacteriol179:170–179[PubMed]
    [Google Scholar]
  21. Perez J. C., Groisman E. A..( 2009;). Evolution of transcriptional regulatory circuits in bacteria. Cell138:233–244 [CrossRef][PubMed]
    [Google Scholar]
  22. Pullan S. T., Chandra G., Bibb M. J., Merrick M..( 2011;). Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics12:175 [CrossRef][PubMed]
    [Google Scholar]
  23. Ramos J. L., Martínez-Bueno M., Molina-Henares A. J., Terán W., Watanabe K., Zhang X., Gallegos M. T., Brennan R., Tobes R..( 2005;). The TetR family of transcriptional repressors. Microbiol Mol Biol Rev69:326–356 [CrossRef][PubMed]
    [Google Scholar]
  24. Reuther J., Wohlleben W..( 2007;). Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. J Mol Microbiol Biotechnol12:139–146 [CrossRef][PubMed]
    [Google Scholar]
  25. Roon R. J., Levenberg B..( 1972;). Urea amidolyase. I. Properties of the enzyme from Candida utilis. J Biol Chem247:4107–4113[PubMed]
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T..( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Strohl W. R..( 1992;). Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res20:961–974 [CrossRef][PubMed]
    [Google Scholar]
  28. Tiffert Y., Supra P., Wurm R., Wohlleben W., Wagner R., Reuther J..( 2008;). The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol67:861–880 [CrossRef][PubMed]
    [Google Scholar]
  29. Xia H., Huang J., Hu M., Shen M., Xie P., Zhang L., Wang H..( 2009;). Construction of an ordered cosmid library of Streptomyces avermitilis for genetic modification of the industrial strains. Chin J Antibiot34:340–343
    [Google Scholar]
  30. Yang H., Wang L., Xie Z., Tian Y., Liu G., Tan H..( 2007;). The tyrosine degradation gene hppD is transcriptionally activated by HpdA and repressed by HpdR in Streptomyces coelicolor, while hpdA is negatively autoregulated and repressed by HpdR. Mol Microbiol65:1064–1077 [CrossRef][PubMed]
    [Google Scholar]
  31. Yu H., Peng W. T., Liu Y., Wu T., Yao Y. F., Cui M. X., Jiang W. H., Zhao G. P..( 2006;). Identification and characterization of glnA promoter and its corresponding trans-regulatory protein GlnR in the rifamycin SV producing actinomycete, Amycolatopsis mediterranei U32. Acta Biochim Biophys Sin (Shanghai)38:831–843 [CrossRef][PubMed]
    [Google Scholar]
  32. Yu H., Yao Y., Liu Y., Jiao R., Jiang W., Zhao G. P..( 2007;). A complex role of Amycolatopsis mediterranei GlnR in nitrogen metabolism and related antibiotics production. Arch Microbiol188:89–96 [CrossRef][PubMed]
    [Google Scholar]
  33. Yu Z. Y., Zhu H., Dang F. J., Zhang W. W., Qin Z. J., Yang S., Tan H. R., Lu Y. H., Jiang W. H..( 2012;). Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor. Mol Microbiol85:535–556 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071449-0
Loading
/content/journal/micro/10.1099/mic.0.071449-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error