1887

Abstract

is a phytopathogenic bacterium secreting a large array of plant-cell-wall-degrading enzymes that participate in the infection and maceration of the host plant tissue. Sequencing of the 3937 genome predicted several genes encoding potential glycosidases. One of these genes, , encodes a protein classified in family 3 of glycosyl hydrolases. Inactivation of and the use of a gene fusion revealed that this gene is not essential for pathogenicity but that it is expressed during plant infection. The expression is induced in the presence of glycosidic or non-glycosidic aromatic compounds, notably ferulic acid, cinnamic acid, vanillic acid and salicin. The BgxA enzyme has a principal β--glucopyranosidase activity and a secondary β--xylopyranosidase activity (ratio 70 : 1). This enzyme activity is inhibited by different aromatic glycosides or phenolic compounds, in particular salicin, arbutin, ferulic acid and vanillic acid. Together, the induction effects and the enzyme inhibition suggest that BgxA is mostly involved in the cleavage of aromatic β-glucosides. There is evidence of functional redundancy in the β-glucoside assimilation pathway. In contrast to other β-glucoside assimilation systems, involving cytoplasmic phospho-β-glucosidases, the cleavage of aromatic glucosides in the periplasmic space by BgxA may avoid the release of a toxic phenolic aglycone into the cytoplasm while still allowing for catabolism of the glucose moiety.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071407-0
2013-11-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2395.html?itemId=/content/journal/micro/10.1099/mic.0.071407-0&mimeType=html&fmt=ahah

References

  1. Antunez-Lamas M., Cabrera E., Lopez-Solanilla E., Solano R., González-Melendi P., Chico J. M., Toth I., Birch P., Pritchard L..& other authors ( 2009;). Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues. Mol Microbiol74:662–671 [CrossRef][PubMed]
    [Google Scholar]
  2. Bardonnet N., Blanco C..( 1992;). ′uidA-antibiotic-resistance cassettes for insertion mutagenesis, gene fusions and genetic constructions. FEMS Microbiol Lett72:243–247[PubMed]
    [Google Scholar]
  3. Bhatia Y., Mishra S., Bisaria V. S..( 2002;). Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol22:375–407 [CrossRef][PubMed]
    [Google Scholar]
  4. Breves R., Bronnenmeier K., Wild N., Lottspeich F., Staudenbauer W. L., Hofemeister J..( 1997;). Genes encoding two different β-glucosidases of Thermoanaerobacter brockii are clustered in a common operon. Appl Environ Microbiol63:3902–3910[PubMed]
    [Google Scholar]
  5. Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V., Henrissat B..( 2009;). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res37:Database issueD233–D238 [CrossRef][PubMed]
    [Google Scholar]
  6. Charkowski A., Blanco C., Condemine G., Expert D., Franza T., Hayes C., Hugouvieux-Cotte-Pattat N., López Solanilla E., Low D..& other authors ( 2012;). The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annu Rev Phytopathol50:425–449 [CrossRef][PubMed]
    [Google Scholar]
  7. Copeland B. R., Richter R. J., Furlong C. E..( 1982;). Renaturation and identification of periplasmic proteins in two-dimensional gels of Escherichia coli. J Biol Chem257:15065–15071[PubMed]
    [Google Scholar]
  8. Dodd D., Kiyonari S., Mackie R. I., Cann I. K. O..( 2010;). Functional diversity of four glycoside hydrolase family 3 enzymes from the rumen bacterium Prevotella bryantii B14. J Bacteriol192:2335–2345 [CrossRef][PubMed]
    [Google Scholar]
  9. el Hassouni M., Chippaux M., Barras F..( 1990;). Analysis of the Erwinia chrysanthemi arb genes, which mediate metabolism of aromatic β-glucosides. J Bacteriol172:6261–6267[PubMed]
    [Google Scholar]
  10. Faure D..( 2002;). The family-3 glycoside hydrolases: from housekeeping functions to host-microbe interactions. Appl Environ Microbiol68:1485–1490 [CrossRef][PubMed]
    [Google Scholar]
  11. Faure D., Desair J., Keijers V., Bekri M. A., Proost P., Henrissat B., Vanderleyden J..( 1999;). Growth of Azospirillum irakense KBC1 on the aryl β-glucoside salicin requires either salA or salB. J Bacteriol181:3003–3009[PubMed]
    [Google Scholar]
  12. Glasner J. D., Yang C. H., Reverchon S., Hugouvieux-Cotte-Pattat N., Condemine G., Bohin J. P., Van Gijsegem F., Yang S., Franza T..& other authors ( 2011;). Genome sequence of the plant-pathogenic bacterium Dickeya dadantii 3937. J Bacteriol193:2076–2077 [CrossRef][PubMed]
    [Google Scholar]
  13. Hassan S., Hugouvieux-Cotte-Pattat N..( 2011;). Identification of two feruloyl esterases in Dickeya dadantii 3937 and induction of the major feruloyl esterase and of pectate lyases by ferulic acid. J Bacteriol193:963–970 [CrossRef][PubMed]
    [Google Scholar]
  14. Hauben L., Moore E. R. B., Vauterin L., Steenackers M., Mergaert J., Verdonck L., Swings J..( 1998;). Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol21:384–397 [CrossRef][PubMed]
    [Google Scholar]
  15. Henrissat B., Davies G..( 1997;). Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol7:637–644 [CrossRef][PubMed]
    [Google Scholar]
  16. Hugouvieux-Cotte-Pattat N., Charaoui-Boukerzaza S..( 2009;). Catabolism of raffinose, sucrose, and melibiose in Erwinia chrysanthemi 3937. J Bacteriol191:6960–6967 [CrossRef][PubMed]
    [Google Scholar]
  17. Hugouvieux-Cotte-Pattat N., Dominguez H., Robert-Baudouy J..( 1992;). Environmental conditions affect transcription of the pectinase genes of Erwinia chrysanthemi 3937. J Bacteriol174:7807–7818[PubMed]
    [Google Scholar]
  18. Hugouvieux-Cotte-Pattat N., Condemine G., Nasser W., Reverchon S..( 1996;). Regulation of pectinolysis in Erwinia chrysanthemi. Annu Rev Microbiol50:213–257 [CrossRef][PubMed]
    [Google Scholar]
  19. Ismail B., Hayes K..( 2005;). β-Glycosidase activity toward different glycosidic forms of isoflavones. J Agric Food Chem53:4918–4924 [CrossRef][PubMed]
    [Google Scholar]
  20. Ketudat Cairns J. R., Esen A..( 2010;). β-Glucosidases. Cell Mol Life Sci67:3389–3405 [CrossRef][PubMed]
    [Google Scholar]
  21. Miller J. H..( 1992;). A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Resibois A., Colet M., Faelen M., Schoonejans E., Toussaint A..( 1984;). phiEC2, a new generalized transducing phage of Erwinia chrysanthemi. Virology137:102–112 [CrossRef][PubMed]
    [Google Scholar]
  23. Roeder D. L., Collmer A..( 1985;). Marker-exchange mutagenesis of a pectate lyase isozyme gene in Erwinia chrysanthemi. J Bacteriol164:51–56[PubMed]
    [Google Scholar]
  24. Sambrook J., Russell D. W..( 2001;). Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Samson R., Legendre J. B., Christen R., Fischer-Le Saux M., Achouak W., Gardan L..( 2005;). Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol55:1415–1427 [CrossRef][PubMed]
    [Google Scholar]
  26. Shipkowski S., Brenchley J. E..( 2005;). Characterization of an unusual cold-active β-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Appl Environ Microbiol71:4225–4232 [CrossRef][PubMed]
    [Google Scholar]
  27. Studier F. W., Moffatt B. A..( 1986;). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol189:113–130 [CrossRef][PubMed]
    [Google Scholar]
  28. Tabor S., Richardson C. C..( 1985;). A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A82:1074–1078 [CrossRef][PubMed]
    [Google Scholar]
  29. Tardy F., Nasser W., Robert-Baudouy J., Hugouvieux-Cotte-Pattat N..( 1997;). Comparative analysis of the five major Erwinia chrysanthemi pectate lyases: enzyme characteristics and potential inhibitors. J Bacteriol179:2503–2511[PubMed]
    [Google Scholar]
  30. Toth I. K., Bell K. S., Holeva M. C., Birch P. R..( 2003;). Soft rot erwiniae: from genes to genomes. Mol Plant Pathol4:17–30 [CrossRef][PubMed]
    [Google Scholar]
  31. Van Gijsegem F., Wlodarczyk A., Cornu A., Reverchon S., Hugouvieux-Cotte-Pattat N..( 2008;). Analysis of the LacI family regulators of Erwinia chrysanthemi 3937, involvement in the bacterial phytopathogenicity. Mol Plant Microbe Interact21:1471–1481 [CrossRef][PubMed]
    [Google Scholar]
  32. Varghese J. N., Hrmova M., Fincher G. B..( 1999;). Three-dimensional structure of a barley β-d-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure7:179–190 [CrossRef][PubMed]
    [Google Scholar]
  33. Vroemen S., Heldens J., Boyd C., Henrissat B., Keen N. T..( 1995;). Cloning and characterization of the bgxA gene from Erwinia chrysanthemi D1 which encodes a β-glucosidase/xylosidase enzyme. Mol Gen Genet246:465–477 [CrossRef][PubMed]
    [Google Scholar]
  34. Watt D. K., Ono H., Hayashi K..( 1998;). Agrobacterium tumefaciens β-glucosidase is also an effective β-xylosidase, and has a high transglycosylation activity in the presence of alcohols. Biochim Biophys Acta1385:78–88 [CrossRef][PubMed]
    [Google Scholar]
  35. Wulff-Strobel C. R., Wilson D. B..( 1995;). Cloning, sequencing, and characterization of a membrane-associated Prevotella ruminicola B(1)4 β-glucosidase with cellodextrinase and cyanoglycosidase activities. J Bacteriol177:5884–5890[PubMed]
    [Google Scholar]
  36. Yang M., Luoh S. M., Goddard A., Reilly D., Henzel W., Bass S..( 1996;). The bglX gene located at 47.8 min on the Escherichia coli chromosome encodes a periplasmic β-glucosidase. Microbiology142:1659–1665 [CrossRef][PubMed]
    [Google Scholar]
  37. Zverlov V. V., Volkov I. Y., Velikodvorskaya T. V., Schwarz W. H..( 1997;). Thermotoga neapolitana bglB gene, upstream of lamA, encodes a highly thermostable β-glucosidase that is a laminaribiase. Microbiology143:3537–3542 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071407-0
Loading
/content/journal/micro/10.1099/mic.0.071407-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error