glutamate dehydrogenase is a secreted enzyme that confers resistance to HO Free

Abstract

produces an NAD-specific glutamate dehydrogenase (GDH), which converts -glutamate into α-ketoglutarate through an irreversible reaction. The enzyme GDH is detected in the stool samples of patients with ‐associated disease and serves as one of the diagnostic tools to detect infection (CDI). We demonstrate here that supernatant fluids of cultures contain GDH. To understand the role of GDH in the physiology of , an isogenic insertional mutant of was created in strain JIR8094. The mutant failed to produce and secrete GDH as shown by Western blot analysis. Various phenotypic assays were performed to understand the importance of GDH in physiology. In TY (tryptose yeast extract) medium, the mutant grew slower than the parent strain. Complementation of the mutant with the functional gene reversed the growth defect in TY medium. The presence of extracellular GDH may have a functional role in the pathogenesis of CDI. In support of this assumption we found higher sensitivity to HO in the mutant as compared to the parent strain. Complementation of the mutant with the functional gene reversed the HO sensitivity.

Funding
This study was supported by the:
  • KINBRE
  • National Center for Research Resources (Award P20RR016475)
  • National Institute of General Medical Sciences (Award P20GM103418)
  • COBRE (Award P30GM103326)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071365-0
2014-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/47.html?itemId=/content/journal/micro/10.1099/mic.0.071365-0&mimeType=html&fmt=ahah

References

  1. Anderson B. M., Anderson C. D., Van Tassell R. L., Lyerly D. M., Wilkins T. D. ( 1993). Purification and characterization of Clostridium difficile glutamate dehydrogenase. Arch Biochem Biophys 300:483–488 [View Article][PubMed]
    [Google Scholar]
  2. Barker H. A. ( 1981). Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50:23–40 [View Article][PubMed]
    [Google Scholar]
  3. Bartlett J. G., Moon N., Chang T. W., Taylor N., Onderdonk A. B. ( 1978). Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology 75:778–782[PubMed]
    [Google Scholar]
  4. Bolivar J. M., Cava F., Mateo C., Rocha-Martín J., Guisán J. M., Berenguer J., Fernandez-Lafuente R. ( 2008). Immobilization-stabilization of a new recombinant glutamate dehydrogenase from Thermus thermophilus. Appl Microbiol Biotechnol 80:49–58 [View Article][PubMed]
    [Google Scholar]
  5. Burdon D. W., George R. H., Mogg G. A., Arabi Y., Thompson H., Johnson M., Alexander-Williams J., Keighley M. R. ( 1981). Faecal toxin and severity of antibiotic-associated pseudomembranous colitis. J Clin Pathol 34:548–551 [View Article][PubMed]
    [Google Scholar]
  6. Carroll K. C. ( 2011). Tests for the diagnosis of Clostridium difficile infection: the next generation. Anaerobe 17:170–174 [View Article][PubMed]
    [Google Scholar]
  7. Dupuy B., Sonenshein A. L. ( 1998). Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 27:107–120 [View Article][PubMed]
    [Google Scholar]
  8. Faulds-Pain A., Wren B. W. ( 2013). Improved bacterial mutagenesis by high-frequency allele exchange, demonstrated in Clostridium difficile and Streptococcus suis. Appl Environ Microbiol 79:4768–4771 [View Article][PubMed]
    [Google Scholar]
  9. Goudot-Crozel V., Caillol D., Djabali M., Dessein A. J. ( 1989). The major parasite surface antigen associated with human resistance to schistosomiasis is a 37-kD glyceraldehyde-3P-dehydrogenase. J Exp Med 170:2065–2080 [View Article][PubMed]
    [Google Scholar]
  10. Govind R., Dupuy B. ( 2012). Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE. PLoS Pathog 8:e1002727 [View Article][PubMed]
    [Google Scholar]
  11. Hammer B. A., Johnson E. A. ( 1988). Purification, properties, and metabolic roles of NAD+-glutamate dehydrogenase in Clostridium botulinum 113B. Arch Microbiol 150:460–464 [View Article][PubMed]
    [Google Scholar]
  12. Heap J. T., Pennington O. J., Cartman S. T., Carter G. P., Minton N. P. ( 2007). The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464 [View Article][PubMed]
    [Google Scholar]
  13. Heap J. T., Pennington O. J., Cartman S. T., Minton N. P. ( 2009). A modular system for Clostridium shuttle plasmids. J Microbiol Methods 78:79–85 [View Article][PubMed]
    [Google Scholar]
  14. Heap J. T., Kuehne S. A., Ehsaan M., Cartman S. T., Cooksley C. M., Scott J. C., Minton N. P. ( 2010). The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80:49–55 [View Article][PubMed]
    [Google Scholar]
  15. Hudson R. C., Daniel R. M. ( 1993). l-Glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B 106:767–792[PubMed]
    [Google Scholar]
  16. Jackson S., Calos M., Myers A., Self W. T. ( 2006). Analysis of proline reduction in the nosocomial pathogen Clostridium difficile. J Bacteriol 188:8487–8495 [View Article][PubMed]
    [Google Scholar]
  17. Joe A., Murray C. S., McBride B. C. ( 1994). Nucleotide sequence of a Porphyromonas gingivalis gene encoding a surface-associated glutamate dehydrogenase and construction of a glutamate dehydrogenase-deficient isogenic mutant. Infect Immun 62:1358–1368[PubMed]
    [Google Scholar]
  18. Keel K., Brazier J. S., Post K. W., Weese S., Songer J. G. ( 2007). Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J Clin Microbiol 45:1963–1964 [View Article][PubMed]
    [Google Scholar]
  19. Kirchgessner A. L. ( 2001). Glutamate in the enteric nervous system. Curr Opin Pharmacol 1:591–596 [View Article][PubMed]
    [Google Scholar]
  20. Kolberg J., Høiby E. A., Lopez R., Sletten K. ( 1997). Monoclonal antibodies against Streptococcus pneumoniae detect epitopes on eubacterial ribosomal proteins L7/L12 and on streptococcal elongation factor Ts. Microbiology 143:55–61 [View Article][PubMed]
    [Google Scholar]
  21. Kuehne S. A., Cartman S. T., Heap J. T., Kelly M. L., Cockayne A., Minton N. P. ( 2010). The role of toxin A and toxin B in Clostridium difficile infection. Nature 467:711–713 [View Article][PubMed]
    [Google Scholar]
  22. Limami A. M., Glévarec G., Ricoult C., Cliquet J. B., Planchet E. ( 2008). Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress. J Exp Bot 59:2325–2335 [View Article][PubMed]
    [Google Scholar]
  23. Lottenberg R., Broder C. C., Boyle M. D., Kain S. J., Schroeder B. L., Curtiss R. III ( 1992). Cloning, sequence analysis, and expression in Escherichia coli of a streptococcal plasmin receptor. J Bacteriol 174:5204–5210[PubMed]
    [Google Scholar]
  24. Lyerly D. M., Barroso L. A., Wilkins T. D. ( 1991). Identification of the latex test-reactive protein of Clostridium difficile as glutamate dehydrogenase. J Clin Microbiol 29:2639–2642[PubMed]
    [Google Scholar]
  25. Lyras D., O’Connor J. R., Howarth P. M., Sambol S. P., Carter G. P., Phumoonna T., Poon R., Adams V., Vedantam G. & other authors ( 2009). Toxin B is essential for virulence of Clostridium difficile. Nature 458:1176–1179 [View Article][PubMed]
    [Google Scholar]
  26. Mailloux R. J., Singh R., Brewer G., Auger C., Lemire J., Appanna V. D. ( 2009). Alpha-ketoglutarate dehydrogenase and glutamate dehydrogenase work in tandem to modulate the antioxidant alpha-ketoglutarate during oxidative stress in Pseudomonas fluorescens. J Bacteriol 191:3804–3810 [View Article][PubMed]
    [Google Scholar]
  27. McCollum D. L., Rodriguez J. M. ( 2012). Detection, treatment, and prevention of Clostridium difficile infection. Clin Gastroenterol Hepatol 10:581–592 [View Article][PubMed]
    [Google Scholar]
  28. McGlone S. M., Bailey R. R., Zimmer S. M., Popovich M. J., Tian Y., Ufberg P., Muder R. R., Lee B. Y. ( 2012). The economic burden of Clostridium difficile.. Clin Microbiol Infect 18:282–289 [View Article][PubMed]
    [Google Scholar]
  29. Merrick M. J., Edwards R. A. ( 1995). Nitrogen control in bacteria. Microbiol Rev 59:604–622[PubMed]
    [Google Scholar]
  30. Ng Y. K., Ehsaan M., Philip S., Collery M. M., Janoir C., Collignon A., Cartman S. T., Minton N. P. ( 2013). Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles. PLoS ONE 8:e56051 [View Article][PubMed]
    [Google Scholar]
  31. O’Brien J. A., Lahue B. J., Caro J. J., Davidson D. M. ( 2007). The emerging infectious challenge of Clostridium difficile-associated disease in Massachusetts hospitals: clinical and economic consequences. Infect Control Hosp Epidemiol 28:1219–1227 [View Article][PubMed]
    [Google Scholar]
  32. O’Connor J. R., Lyras D., Farrow K. A., Adams V., Powell D. R., Hinds J., Cheung J. K., Rood J. I. ( 2006). Construction and analysis of chromosomal Clostridium difficile mutants. Mol Microbiol 61:1335–1351 [View Article][PubMed]
    [Google Scholar]
  33. Okwumabua O., Persaud J. S., Reddy P. G. ( 2001). Cloning and characterization of the gene encoding the glutamate dehydrogenase of Streptococcus suis serotype 2. Clin Diagn Lab Immunol 8:251–257[PubMed]
    [Google Scholar]
  34. Pancholi V., Fischetti V. A. ( 1992). A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176:415–426 [View Article][PubMed]
    [Google Scholar]
  35. Semenza G. L. ( 2007). Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007:cm8 [View Article][PubMed]
    [Google Scholar]
  36. Shetty N., Wren M. W., Coen P. G. ( 2011). The role of glutamate dehydrogenase for the detection of Clostridium difficile in faecal samples: a meta-analysis. J Hosp Infect 77:1–6 [View Article][PubMed]
    [Google Scholar]
  37. Sirigi Reddy A. R., Girinathan B. P., Zapotocny R., Govind R. ( 2013). Identification and characterization of Clostridium sordellii toxin gene regulator. J Bacteriol 195:4246–4254 [View Article][PubMed]
    [Google Scholar]
  38. Stabler R. A., He M., Dawson L., Martin M., Valiente E., Corton C., Lawley T. D., Sebaihia M., Quail M. A. & other authors ( 2009). Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 10:R102 [View Article][PubMed]
    [Google Scholar]
  39. Teng F., Murray B. E., Weinstock G. M. ( 1998). Conjugal transfer of plasmid DNA from Escherichia coli to enterococci: a method to make insertion mutations. Plasmid 39:182–186 [View Article][PubMed]
    [Google Scholar]
  40. Terao Y., Yamaguchi M., Hamada S., Kawabata S. ( 2006). Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem 281:14215–14223 [View Article][PubMed]
    [Google Scholar]
  41. Xue H., Field C. J. ( 2011). New role of glutamate as an immunoregulator via glutamate receptors and transporters. Front Biosci (Schol Edn) 3:1007–1020 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071365-0
Loading
/content/journal/micro/10.1099/mic.0.071365-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed