1887

Abstract

Expression of mannitol utilization genes in is directed by P, the promoter of the operon, and P, the promoter of the MtlR activator. MtlR contains phosphoenolpyruvate-dependent phosphotransferase system (PTS) regulation domains, called PRDs. The activity of PRD-containing MtlR is mainly regulated by the phosphorylation/dephosphorylation of its PRDII and EIIB-like domains. Replacing histidine 342 and cysteine 419 residues, which are the targets of phosphorylation in these two domains, by aspartate and alanine provided MtlR-H342D C419A, which permanently activates P. In the -H342D C419A mutant, P was active, even when the operon was deleted from the genome. The -H342D C419A allele was expressed in an strain lacking enzyme I of the PTS. Electrophoretic mobility shift assays using purified MtlR-H342D C419A showed an interaction between the MtlR double-mutant and the Cy5-labelled P and P DNA fragments. These investigations indicate that the activated MtlR functions regardless of the presence of the mannitol-specific transporter (MtlA). This is in contrast to the proposed model in which the sequestration of MtlR by the MtlA transporter is necessary for the activity of MtlR. Additionally, DNase I footprinting, construction of P-P hybrid promoters, as well as increasing the distance between the MtlR operator and the −35 box of P revealed that the activated MtlR molecules and RNA polymerase holoenzyme likely form a class II type activation complex at P and P during transcription initiation.

Funding
This study was supported by the:
  • the German Academic Exchange Service (DAAD)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071233-0
2014-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/91.html?itemId=/content/journal/micro/10.1099/mic.0.071233-0&mimeType=html&fmt=ahah

References

  1. Altenbuchner J., Viell P., Pelletier I. ( 1992). Positive selection vectors based on palindromic DNA sequences. Methods Enzymol 216:457–466 [View Article][PubMed]
    [Google Scholar]
  2. Arnaud M., Vary P., Zagorec M., Klier A., Debarbouille M., Postma P., Rapoport G. ( 1992). Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity. J Bacteriol 174:3161–3170[PubMed]
    [Google Scholar]
  3. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H. ( 2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:0008 [View Article][PubMed]
    [Google Scholar]
  4. Bouraoui H., Ventroux M., Noirot-Gros M. F., Deutscher J., Joyet P. ( 2013). Membrane sequestration by the EIIB domain of the mannitol permease MtlA activates the Bacillus subtilis mtl operon regulator MtlR. Mol Microbiol 87:789–801 [View Article][PubMed]
    [Google Scholar]
  5. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  6. Browning D. F., Busby S. J. ( 2004). The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65 [View Article][PubMed]
    [Google Scholar]
  7. Crutz A. M., Steinmetz M., Aymerich S., Richter R., Le Coq D. ( 1990). Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J Bacteriol 172:1043–1050[PubMed]
    [Google Scholar]
  8. Deutscher J., Galinier A., Martin-Verstraete I. ( 2002). Carbohydrate uptake and metabolism. Bacillus Subtilis and its Closest Relatives: from Genes to Cells129–150 Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology; [CrossRef]
    [Google Scholar]
  9. Deutscher J., Francke C., Postma P. W. ( 2006). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031 [View Article][PubMed]
    [Google Scholar]
  10. Fujita Y. ( 2009). Carbon catabolite control of the metabolic network in Bacillus subtilis. . Biosci Biotechnol Biochem 73:245–259 [View Article][PubMed]
    [Google Scholar]
  11. Greenberg D. B., Stülke J., Saier M. H. Jr ( 2002). Domain analysis of transcriptional regulators bearing PTS regulatory domains. Res Microbiol 153:519–526 [View Article][PubMed]
    [Google Scholar]
  12. Guérout-Fleury A. M., Frandsen N., Stragier P. ( 1996). Plasmids for ectopic integration in Bacillus subtilis. . Gene 180:57–61 [View Article][PubMed]
    [Google Scholar]
  13. Harwood C. R., Cutting S. M. ( 1990). Molecular Biological Methods for Bacillus New York: Wiley;
    [Google Scholar]
  14. Heravi K. M., Wenzel M., Altenbuchner J. ( 2011). Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors. Microb Cell Fact 10:83 [View Article][PubMed]
    [Google Scholar]
  15. Hoffmann J., Bóna-Lovász J., Beuttler H., Altenbuchner J. ( 2012). In vivo and in vitro studies on the carotenoid cleavage oxygenases from Sphingopyxis alaskensis RB2256 and Plesiocystis pacifica SIR-1 revealed their substrate specificities and non-retinal-forming cleavage activities. FEBS J 279:3911–3924 [View Article][PubMed]
    [Google Scholar]
  16. Joyet P., Derkaoui M., Poncet S., Deutscher J. ( 2010). Control of Bacillus subtilis mtl operon expression by complex phosphorylation-dependent regulation of the transcriptional activator MtlR. Mol Microbiol 76:1279–1294 [View Article][PubMed]
    [Google Scholar]
  17. Joyet P., Bouraoui H., Aké F. M., Derkaoui M., Zébré A. C., Cao T. N., Ventroux M., Nessler S., Noirot-Gros M. F. & other authors ( 2013). Transcription regulators controlled by interaction with enzyme IIB components of the phosphoenolpyruvate: sugar phosphotransferase system. Biochim Biophys Acta 1834:1415–1424 [View Article][PubMed]
    [Google Scholar]
  18. Lee D. J., Minchin S. D., Busby S. J. ( 2012). Activating transcription in bacteria. Annu Rev Microbiol 66:125–152 [View Article][PubMed]
    [Google Scholar]
  19. Lindner C., Galinier A., Hecker M., Deutscher J. ( 1999). Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Mol Microbiol 31:995–1006 [View Article][PubMed]
    [Google Scholar]
  20. Lindner C., Hecker M., Le Coq D., Deutscher J. ( 2002). Bacillus subtilis mutant LicT antiterminators exhibiting enzyme I- and HPr-independent antitermination affect catabolite repression of the bglPH operon. J Bacteriol 184:4819–4828 [View Article][PubMed]
    [Google Scholar]
  21. Lopian L., Nussbaum-Shochat A., O’Day-Kerstein K., Wright A., Amster-Choder O. ( 2003). The BglF sensor recruits the BglG transcription regulator to the membrane and releases it on stimulation. Proc Natl Acad Sci U S A 100:7099–7104 [View Article][PubMed]
    [Google Scholar]
  22. Luria S. E., Adams J. N., Ting R. C. ( 1960). Transduction of lactose-utilizing ability among strains of E. coli and S. dysenteriae and the properties of the transducing phage particles. Virology 12:348–390 [View Article][PubMed]
    [Google Scholar]
  23. Martin-Verstraete I., Débarbouillé M., Klier A., Rapoport G. ( 1992). Mutagenesis of the Bacillus subtilis “-12, -24” promoter of the levanase operon and evidence for the existence of an upstream activating sequence. J Mol Biol 226:85–99 [View Article][PubMed]
    [Google Scholar]
  24. Michel J. F., Millet J. ( 1970). Physiological studies on early-blocked sporulation mutants of Bacillus subtilis. . J Appl Bacteriol 33:220–227 [View Article][PubMed]
    [Google Scholar]
  25. Miller J. H. ( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Motejadded H., Altenbuchner J. ( 2007). Integration of a lipase gene into the Bacillus subtilis chromosome: Recombinant strains without antibiotic resistance marker. Iranian J Biotechnol 5:105–109
    [Google Scholar]
  27. Reizer J., Bachem S., Reizer A., Arnaud M., Saier M. H. Jr, Stülke J. ( 1999). Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis . Microbiology 145:3419–3429[PubMed] [CrossRef]
    [Google Scholar]
  28. Rothe F. M., Wrede C., Lehnik-Habrink M., Görke B., Stülke J. ( 2013). Dynamic localization of a transcription factor in Bacillus subtilis: the LicT antiterminator relocalizes in response to inducer availability. J Bacteriol 195:2146–2154 [View Article][PubMed]
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. ( 1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [View Article][PubMed]
    [Google Scholar]
  31. Schnetz K., Stülke J., Gertz S., Krüger S., Krieg M., Hecker M., Rak B. ( 1996). LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178:1971–1979[PubMed]
    [Google Scholar]
  32. Sonenshein A. L. ( 2007). Control of key metabolic intersections in Bacillus subtilis. . Nat Rev Microbiol 5:917–927 [View Article][PubMed]
    [Google Scholar]
  33. Stülke J., Martin-Verstraete I., Zagorec M., Rose M., Klier A., Rapoport G. ( 1997). Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol 25:65–78 [View Article][PubMed]
    [Google Scholar]
  34. Stülke J., Arnaud M., Rapoport G., Martin-Verstraete I. ( 1998). PRD–a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 28:865–874 [View Article][PubMed]
    [Google Scholar]
  35. Sun T., Altenbuchner J. ( 2010). Characterization of a mannose utilization system in Bacillus subtilis. . J Bacteriol 192:2128–2139 [View Article][PubMed]
    [Google Scholar]
  36. Titok M. A., Chapuis J., Selezneva Y. V., Lagodich A. V., Prokulevich V. A., Ehrlich S. D., Jannière L. ( 2003). Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector. Plasmid 49:53–62 [View Article][PubMed]
    [Google Scholar]
  37. Tobisch S., Stülke J., Hecker M. ( 1999). Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis. J Bacteriol 181:4995–5003[PubMed]
    [Google Scholar]
  38. Tortosa P., Declerck N., Dutartre H., Lindner C., Deutscher J., Le Coq D. ( 2001). Sites of positive and negative regulation in the Bacillus subtilis antiterminators LicT and SacY. Mol Microbiol 41:1381–1393 [View Article][PubMed]
    [Google Scholar]
  39. Watanabe S., Hamano M., Kakeshita H., Bunai K., Tojo S., Yamaguchi H., Fujita Y., Wong S. L., Yamane K. ( 2003). Mannitol-1-phosphate dehydrogenase (MtlD) is required for mannitol and glucitol assimilation in Bacillus subtilis: possible cooperation of mtl and gut operons. J Bacteriol 185:4816–4824 [View Article][PubMed]
    [Google Scholar]
  40. Wenzel M., Altenbuchner J. ( 2013). The Bacillus subtilis mannose regulator, ManR, a DNA-binding protein regulated by HPr and its cognate PTS transporter ManP. Mol Microbiol 88:562–576 [View Article][PubMed]
    [Google Scholar]
  41. Yamamoto H., Serizawa M., Thompson J., Sekiguchi J. ( 2001). Regulation of the glv operon in Bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre. . J Bacteriol 183:5110–5121 [View Article][PubMed]
    [Google Scholar]
  42. Yanisch-Perron C., Vieira J., Messing J. ( 1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071233-0
Loading
/content/journal/micro/10.1099/mic.0.071233-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error