Expression and promoter characterization of , a pH response transcription factor gene of the entomopathogenic fungus Free

Abstract

To survive, the entomopathogenic fungus , which shows promise as a biocontrol agent for a variety of pests, including agricultural and forestry pests and vectors of human pathogens, must tailor gene expression to the particular pH of its environment. The pH response transcription factor gene and its flanking sequence were cloned from this fungus. Quantitative reverse transcription (RT)-PCR revealed that it is highly induced by alkaline pH and salt stress, and the expression level achieved twice that of the housekeeping gene γ-actin. A microfluorometric assay indicated that the 1479 bp promoter region could activate the expression of enhanced green fluorescent protein (EGFP) under the same conditions. Truncation analysis showed that the 1479, 1274, 1040, 888 and 742 bp promoters have similar efficiencies in activating expression of β-glucuronidase (GUS). The GUS activities of corresponding transformants reached approximately 50 % that of those containing the strong constitutive promoter PtrpC. A truncation upstream at the –572 bp position (referenced to the translation start codon ATG), however, resulted in a significant loss of GUS activity. Both the upstream absences of the −502 and −387 bp positions caused almost complete loss of GUS activity. These results suggest that PPacC is an efficient, alkaline, and salt-inducible promoter, the core -elements are mainly located within the –742 to –502 bp region, and promoters equal to or longer than 742 bp may be feasible for regulating gene expression in response to an ambient pH or salt stress.

Funding
This study was supported by the:
  • China Postdoctoral Science Foundation (Award 102060-40501212)
  • Chongqing Postdoctoral Science Foundation (Award XM2012009)
  • National Natural Science Foundation of China (Award 31201564)
  • National Program on Key Basic Research Project (Award 2009CB118904 and 2012CB126304)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071159-0
2014-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/2/353.html?itemId=/content/journal/micro/10.1099/mic.0.071159-0&mimeType=html&fmt=ahah

References

  1. Ali-Shtayeh M. S., Mara’i A. B., Jamous R. M. ( 2003). Distribution, occurrence and characterization of entomopathogenic fungi in agricultural soil in the Palestinian area. Mycopathologia 156:235–244 [View Article][PubMed]
    [Google Scholar]
  2. Behie S. W., Zelisko P. M., Bidochka M. J. ( 2012). Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336:1576–1577 [View Article][PubMed]
    [Google Scholar]
  3. Bhanu Prakash G. V., Padmaja V., Siva Kiran R. R. ( 2008). Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation. Bioresour Technol 99:1530–1537 [View Article][PubMed]
    [Google Scholar]
  4. Bidochka M. J., Kamp A. M., De Croos J. N. A. ( 2000). Insect pathogenic fungi: from genes to populations. Fungal Pathology171–193 Kronstad J. W. Dordrecht: Kluwer Academic Publishers; [View Article]
    [Google Scholar]
  5. Blossfeld S., Perriguey J., Sterckeman T., More J.-L., Lösch R. ( 2010). Rhizosphere pH dynamics in trace-metal-contaminated soils, monitored with planar pH optodes. Plant Soil 330:173–184 [View Article]
    [Google Scholar]
  6. Blossfeld S., Gansert D., Thiele B., Kuhn A. J., Lösch R. ( 2011). The dynamics of oxygen concentration, pH value, and organic acids in the rhizosphere of Juncus spp.. Soil Biol Biochem 43:1186–1197 [View Article]
    [Google Scholar]
  7. Cao Y., Jiao R., Xia Y. ( 2012). A strong promoter, PMagpd, provides a tool for high gene expression in entomopathogenic fungus, Metarhizium acridum. Biotechnol Lett 34:557–562 [View Article][PubMed]
    [Google Scholar]
  8. Caracuel Z., Casanova C., Roncero M. I., Di Pietro A., Ramos J. ( 2003). pH response transcription factor PacC controls salt stress tolerance and expression of the P-Type Na+ -ATPase Ena1 in Fusarium oxysporum. Eukaryot Cell 2:1246–1252 [View Article][PubMed]
    [Google Scholar]
  9. Cupertino F. B., Freitas F. Z., de Paula R. M., Bertolini M. C. ( 2012). Ambient pH controls glycogen levels by regulating glycogen synthase gene expression in Neurospora crassa. New insights into the pH signaling pathway. PLoS ONE 7:e44258 [View Article][PubMed]
    [Google Scholar]
  10. Díez E., Álvaro J., Espeso E. A., Rainbow L., Suárez T., Tilburn J., Arst H. N. Jr, Peñalva M. A. ( 2002). Activation of the Aspergillus PacC zinc finger transcription factor requires two proteolytic steps. EMBO J 21:1350–1359 [View Article][PubMed]
    [Google Scholar]
  11. Espeso E. A., Arst H. N. Jr ( 2000). On the mechanism by which alkaline pH prevents expression of an acid-expressed gene. Mol Cell Biol 20:3355–3363 [View Article][PubMed]
    [Google Scholar]
  12. Espeso E. A., Peñalva M. A. ( 1996). Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J Biol Chem 271:28825–28830 [View Article][PubMed]
    [Google Scholar]
  13. Espeso E. A., Tilburn J., Sánchez-Pulido L., Brown C. V., Valencia A., Arst H. N. Jr, Peñalva M. A. ( 1997). Specific DNA recognition by the Aspergillus nidulans three zinc finger transcription factor PacC. J Mol Biol 274:466–480 [View Article][PubMed]
    [Google Scholar]
  14. Fang W. G., Yang X. Y., Zhang Y. J., Pei Y. ( 2002). Rapid extraction of DNA and RNA from fungi. Chin J Appl Environ Biol 8:305–307
    [Google Scholar]
  15. Fang W., Zhang Y., Yang X., Zheng X., Duan H., Li Y., Pei Y. ( 2004). Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. J Invertebr Pathol 85:18–24 [View Article][PubMed]
    [Google Scholar]
  16. Fomina M., Hillier S., Charnock J. M., Melville K., Alexander I. J., Gadd G. M. ( 2005). Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl Environ Microbiol 71:371–381 [View Article][PubMed]
    [Google Scholar]
  17. Gao Q., Jin K., Ying S. H., Zhang Y., Xiao G., Shang Y., Duan Z., Hu X., Xie X. Q. & other authors ( 2011). Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7:e1001264 [View Article][PubMed]
    [Google Scholar]
  18. Govenor H. L., Schultz J. C., Appel H. M. ( 1997). Impact of dietary allelochemicals on gypsy moth (Lymantria dispar) caterpillars: importance of midgut alkalinity. J Insect Physiol 43:1169–1175 [View Article][PubMed]
    [Google Scholar]
  19. Hallsworth J. E., Magan N. ( 1996). Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol 62:2435–2442[PubMed]
    [Google Scholar]
  20. Issaly N., Chauveau H., Aglevor F., Fargues J., Durand A. ( 2005). Influence of nutrient, pH and dissolved oxygen on the production of Metarhizium flavoviride Mf189 blastospores in submerged batch culture. Process Biochem 40:1425–1431 [View Article]
    [Google Scholar]
  21. Jefferson R. A., Kavanagh T. A., Bevan M. W. ( 1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907[PubMed]
    [Google Scholar]
  22. Kanda S., Aimi T., Kano S., Ishihara S., Kitamoto Y., Morinaga T. ( 2008). Ambient pH signaling regulates expression of the serine protease gene (spr1) in pine wilt nematode-trapping fungus, Monacrosporium megalosporum. Microbiol Res 163:63–72 [View Article][PubMed]
    [Google Scholar]
  23. Liao X. G., Fang W. G., Zhang Y. J., Fan Y. H., Wu X. W., Zhou Q., Pei Y. ( 2008). Characterization of a highly active promoter, PBbgpd, in Beauveria bassiana. Curr Microbiol 57:121–126 [View Article][PubMed]
    [Google Scholar]
  24. Liao X. G., Zhang Y. J., Fan Y. H., Ma J. C., Zhou Y. H., Jin D., Pei Y. ( 2009). An ethanol inducible alc system for regulating gene expression in Beauveria bassiana. World J Microb Biot 25:2065–2069 [View Article]
    [Google Scholar]
  25. Ma J. C., Zhou Q., Zhou Y. H., Liao X. G., Zhang Y. J., Jin D., Pei Y. ( 2009). The size and ratio of homologous sequence to non-homologous sequence in gene disruption cassette influences the gene targeting efficiency in Beauveria bassiana. Appl Microbiol Biotechnol 82:891–898 [View Article][PubMed]
    [Google Scholar]
  26. Merhej J., Richard-Forget F., Barreau C. ( 2011). The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genet Biol 48:275–284 [View Article][PubMed]
    [Google Scholar]
  27. Mingot J. M., Espeso E. A., Díez E., Peñalva M. A. ( 2001). Ambient pH signaling regulates nuclear localization of the Aspergillus nidulans PacC transcription factor. Mol Cell Biol 21:1688–1699 [View Article][PubMed]
    [Google Scholar]
  28. Pava-Ripoll M., Angelini C., Fang W., Wang S., Posada F. J., St Leger R. ( 2011). The rhizosphere-competent entomopathogen Metarhizium anisopliae expresses a specific subset of genes in plant root exudate. Microbiology 157:47–55 [View Article][PubMed]
    [Google Scholar]
  29. Peñalva M. A., Tilburn J., Bignell E., Arst H. N. Jr ( 2008). Ambient pH gene regulation in fungi: making connections. Trends Microbiol 16:291–300 [View Article][PubMed]
    [Google Scholar]
  30. Quesada-Moraga E., Navas-Cortés J. A., Maranhao E. A., Ortiz-Urquiza A., Santiago-Alvarez C. ( 2007). Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol Res 111:947–966 [View Article][PubMed]
    [Google Scholar]
  31. Roslan H. A., Salter M. G., Wood C. D., White M. R., Croft K. P., Robson F., Coupland G., Doonan J., Laufs P. & other authors ( 2001). Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J 28:225–235 [View Article][PubMed]
    [Google Scholar]
  32. Schultz J. C., Lechowicz M. J. ( 1986). Hostplant, larval age, and feeding behavior influence midgut pH in the gypsy moth (Lymantria dispar). Oecologia 71:133–137 [View Article]
    [Google Scholar]
  33. St Leger R., Joshi L., Bidochka M. J., Roberts D. W. ( 1996). Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci U S A 93:6349–6354 [View Article][PubMed]
    [Google Scholar]
  34. St Leger R. J., Joshi L., Roberts D. ( 1998). Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae. Appl Environ Microbiol 64:709–713[PubMed]
    [Google Scholar]
  35. St Leger R. J., Nelson J. O., Screen S. E. ( 1999). The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology 145:2691–2699[PubMed]
    [Google Scholar]
  36. Tamerler C., Ullah M., Adlard M. W., Keshavarz T. ( 1998). Effect of pH on physiology of Metarhizium anisopliae for production of swainsonine. FEMS Microbiol Lett 168:17–23 [View Article][PubMed]
    [Google Scholar]
  37. Then Bergh K., Brakhage A. A. ( 1998). Regulation of the Aspergillus nidulans penicillin biosynthesis gene acvA (pcbAB) by amino acids: implication for involvement of transcription factor PACC. Appl Environ Microbiol 64:843–849[PubMed]
    [Google Scholar]
  38. Tilburn J., Sarkar S., Widdick D. A., Espeso E. A., Orejas M., Mungroo J., Peñalva M. A., Arst H. N. Jr ( 1995). The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790[PubMed]
    [Google Scholar]
  39. Wan C. Y., Wilkins T. A. ( 1994). A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12 [View Article][PubMed]
    [Google Scholar]
  40. Wang C., St Leger R. J. ( 2007). A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol 25:1455–1456 [View Article][PubMed]
    [Google Scholar]
  41. Xiao Y. H., Luo M., Fang W. G., Luo K. M., Hou L., Luo X. Y., Pei Y. ( 2002). [PCR walking in cotton genome using YADE method]. Yi Chuan Xue Bao 29:62–66[PubMed]
    [Google Scholar]
  42. Xiao G., Ying S. H., Zheng P., Wang Z. L., Zhang S., Xie X. Q., Shang Y., St Leger R. J., Zhao G. P. & other authors ( 2012). Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483 [View Article][PubMed]
    [Google Scholar]
  43. Ying S. H., Feng M. G. ( 2006). Medium components and culture conditions affect the thermotolerance of aerial conidia of fungal biocontrol agent Beauveria bassiana. Lett Appl Microbiol 43:331–335 [View Article][PubMed]
    [Google Scholar]
  44. Zhou Y. H., Zhang Y. J., Luo Z. B., Fan Y. H., Tang G. R., Liu L. J., Pei Y. ( 2012). Selection of optimal reference genes for expression analysis in the entomopathogenic fungus Beauveria bassiana during development, under changing nutrient conditions, and after exposure to abiotic stresses. Appl Microbiol Biotechnol 93:679–685 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071159-0
Loading
/content/journal/micro/10.1099/mic.0.071159-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed