1887

Abstract

Glycoside hydrolase (GH) family 57 consists of more than 900 proteins from Archaea (roughly one-quarter) and Bacteria (roughly three-quarters), mostly from thermophiles. Fewer than 20 GH57 members have already been biochemically characterized as real, (almost exclusively) amylolytic enzymes. In addition to a recently described dual-specificity amylopullulanase–cyclomaltodextrinase, five enzyme specificities have been well established in the family – α-amylase, amylopullulanase, branching enzyme, 4-α-glucanotransferase and α-galactosidase – plus a group of the so-called α-amylase-like homologues probably without the enzyme activity. A (β/α)-barrel succeeded by a bundle of a few α-helices forming the catalytic domain, and five conserved sequence regions (CSRs), are the main characteristics of family GH57. The main goal of the present bioinformatics study was to describe two novel groups within family GH57 that represent potential non-specified amylases (127 sequences mostly from ) and maltogenic amylases (12 sequences from ). These were collected from sequence databases based on an indication of their biochemical characterization. Although both the non-specified amylases and the maltogenic amylases share the identified catalytic machinery and predicted fold with the experimentally determined GH57 members, the two novel groups may define new GH57 subfamilies. They are distinguishable from the other, previously recognized, subfamilies by specific sequence features present especially in their CSRs (the so-called sequence fingerprints), also reflecting their own evolutionary histories.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071084-0
2013-12-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2584.html?itemId=/content/journal/micro/10.1099/mic.0.071084-0&mimeType=html&fmt=ahah

References

  1. Aghajari N., Haser R., Feller G., Gerday C.. ( 1998;). Crystal structures of the psychrophilic α-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. . Protein Sci 7:, 564–572. [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  3. Arnold K., Bordoli L., Kopp J., Schwede T.. ( 2006;). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. . Bioinformatics 22:, 195–201. [CrossRef][PubMed]
    [Google Scholar]
  4. Ball S., Colleoni C., Cenci U., Raj J. N., Tirtiaux C.. ( 2011;). The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. . J Exp Bot 62:, 1775–1801. [CrossRef][PubMed]
    [Google Scholar]
  5. Ballschmiter M., Fütterer O., Liebl W.. ( 2006;). Identification and characterization of a novel intracellular alkaline α-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. . Appl Environ Microbiol 72:, 2206–2211. [CrossRef][PubMed]
    [Google Scholar]
  6. Benson D. A., Karsch-Mizrachi I., Clark K., Lipman D. J., Ostell J., Sayers E. W.. ( 2012;). GenBank. . Nucleic Acids Res 40: (Database issue), D48–D53. [CrossRef][PubMed]
    [Google Scholar]
  7. Blesák K., Janeček S.. ( 2012;). Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57. . Extremophiles 16:, 497–506. [CrossRef][PubMed]
    [Google Scholar]
  8. Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V., Henrissat B.. ( 2009;). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. . Nucleic Acids Res 37: (Database issue), D233–D238. [CrossRef][PubMed]
    [Google Scholar]
  9. Comfort D. A., Chou C. J., Conners S. B., VanFossen A. L., Kelly R. M.. ( 2008;). Functional-genomics-based identification and characterization of open reading frames encoding α-glucoside-processing enzymes in the hyperthermophilic archaeon Pyrococcus furiosus.. Appl Environ Microbiol 74:, 1281–1283. [CrossRef][PubMed]
    [Google Scholar]
  10. Coutinho P. M., Reilly P. J.. ( 1997;). Glucoamylase structural, functional, and evolutionary relationships. . Proteins 29:, 334–347. [CrossRef][PubMed]
    [Google Scholar]
  11. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E.. ( 2004;). WebLogo: a sequence logo generator. . Genome Res 14:, 1188–1190. [CrossRef][PubMed]
    [Google Scholar]
  12. Da Lage J. L., Danchin E. G., Casane D.. ( 2007;). Where do animal α-amylases come from? An interkingdom trip. . FEBS Lett 581:, 3927–3935. [CrossRef][PubMed]
    [Google Scholar]
  13. Davies G. J., Wilson K. S., Henrissat B.. ( 1997;). Nomenclature for sugar-binding subsites in glycosyl hydrolases. . Biochem J 321:, 557–559.[PubMed]
    [Google Scholar]
  14. Deshpande N., Addess K. J., Bluhm W. F., Merino-Ott J. C., Townsend-Merino W., Zhang Q., Knezevich C., Xie L., Chen L.. & other authors ( 2005;). The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. . Nucleic Acids Res 33: (Suppl. 1, Database issue), D233–D237. [CrossRef][PubMed]
    [Google Scholar]
  15. Dickmanns A., Ballschmiter M., Liebl W., Ficner R.. ( 2006;). Structure of the novel α-amylase AmyC from Thermotoga maritima.. Acta Crystallogr D Biol Crystallogr 62:, 262–270. [CrossRef][PubMed]
    [Google Scholar]
  16. Dong G., Vieille C., Zeikus J. G.. ( 1997;). Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. . Appl Environ Microbiol 63:, 3577–3584.[PubMed]
    [Google Scholar]
  17. Erra-Pujada M., Debeire P., Duchiron F., O’Donohue M. J.. ( 1999;). The type II pullulanase of Thermococcus hydrothermalis: molecular characterization of the gene and expression of the catalytic domain. . J Bacteriol 181:, 3284–3287.[PubMed]
    [Google Scholar]
  18. Felsenstein J.. ( 1985;). Confidence limits on phylogenies – an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  19. Ficko-Blean E., Stuart C. P., Boraston A. B.. ( 2011;). Structural analysis of CPF_2247, a novel α-amylase from Clostridium perfringens.. Proteins 79:, 2771–2777. [CrossRef][PubMed]
    [Google Scholar]
  20. Fukusumi S., Kamizono A., Horinouchi S., Beppu T.. ( 1988;). Cloning and nucleotide sequence of a heat-stable amylase gene from an anaerobic thermophile, Dictyoglomus thermophilum.. Eur J Biochem 174:, 15–21. [CrossRef][PubMed]
    [Google Scholar]
  21. Henrissat B.. ( 1991;). A classification of glycosyl hydrolases based on amino acid sequence similarities. . Biochem J 280:, 309–316.[PubMed]
    [Google Scholar]
  22. Henrissat B., Bairoch A.. ( 1996;). Updating the sequence-based classification of glycosyl hydrolases. . Biochem J 316:, 695–696.[PubMed]
    [Google Scholar]
  23. Imamura H., Fushinobu S., Yamamoto M., Kumasaka T., Jeon B. S., Wakagi T., Matsuzawa H.. ( 2003;). Crystal structures of 4-α-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor. . J Biol Chem 278:, 19378–19386. [CrossRef][PubMed]
    [Google Scholar]
  24. Imamura H., Jeon B. S., Wakagi T.. ( 2004;). Molecular evolution of the ATPase subunit of three archaeal sugar ABC transporters. . Biochem Biophys Res Commun 319:, 230–234. [CrossRef][PubMed]
    [Google Scholar]
  25. Janeček Š.. ( 1997;). α-Amylase family: molecular biology and evolution. . Prog Biophys Mol Biol 67:, 67–97. [CrossRef][PubMed]
    [Google Scholar]
  26. Janeček Š.. ( 1998;). Sequence of archaeal Methanococcus jannaschii α-amylase contains features of families 13 and 57 of glycosyl hydrolases: a trace of their common ancestor. ? Folia Microbiol (Praha) 43:, 123–128. [CrossRef][PubMed]
    [Google Scholar]
  27. Janeček Š., Blesák K.. ( 2011;). Sequence-structural features and evolutionary relationships of family GH57 α-amylases and their putative α-amylase-like homologues. . Protein J 30:, 429–435. [CrossRef][PubMed]
    [Google Scholar]
  28. Janeček Š., Kuchtová A.. ( 2012;). In silico identification of catalytic residues and domain fold of the family GH119 sharing the catalytic machinery with the α-amylase family GH57. . FEBS Lett 586:, 3360–3366. [CrossRef][PubMed]
    [Google Scholar]
  29. Janeček Š., Svensson B., MacGregor E. A.. ( 2011;). Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. . Enzyme Microb Technol 49:, 429–440. [CrossRef][PubMed]
    [Google Scholar]
  30. Janeček Š., Svensson B., Macgregor E. A.. ( 2013;). α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. . Cell Mol Life Sci, (in press). [CrossRef][PubMed]
    [Google Scholar]
  31. Jeon B. S., Taguchi H., Sakai H., Ohshima T., Wakagi T., Matsuzawa H.. ( 1997;). 4-α-Glucanotransferase from the hyperthermophilic archaeon Thermococcus litoralis – enzyme purification and characterization, and gene cloning, sequencing and expression in Escherichia coli. . Eur J Biochem 248:, 171–178. [CrossRef][PubMed]
    [Google Scholar]
  32. Jespersen H. M., MacGregor E. A., Sierks M. R., Svensson B.. ( 1991;). Comparison of the domain-level organization of starch hydrolases and related enzymes. . Biochem J 280:, 51–55.[PubMed]
    [Google Scholar]
  33. Jiao Y. L., Wang S. J., Lv M. S., Xu J. L., Fang Y. W., Liu S.. ( 2011;). A GH57 family amylopullulanase from deep-sea Thermococcus siculi: expression of the gene and characterization of the recombinant enzyme. . Curr Microbiol 62:, 222–228. [CrossRef][PubMed]
    [Google Scholar]
  34. Katsuya Y., Mezaki Y., Kubota M., Matsuura Y.. ( 1998;). Three-dimensional structure of Pseudomonas isoamylase at 2.2 Å resolution. . J Mol Biol 281:, 885–897. [CrossRef][PubMed]
    [Google Scholar]
  35. Kelley L. A., Sternberg M. J.. ( 2009;). Protein structure prediction on the Web: a case study using the Phyre server. . Nat Protoc 4:, 363–371. [CrossRef][PubMed]
    [Google Scholar]
  36. Kim J. W., Flowers L. O., Whiteley M., Peeples T. L.. ( 2001;). Biochemical confirmation and characterization of the family-57-like α-amylase of Methanococcus jannaschii.. Folia Microbiol (Praha) 46:, 467–473. [CrossRef][PubMed]
    [Google Scholar]
  37. Labes A., Schönheit P.. ( 2007;). Unusual starch degradation pathway via cyclodextrins in the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. . J Bacteriol 189:, 8901–8913. [CrossRef][PubMed]
    [Google Scholar]
  38. Laderman K. A., Asada K., Uemori T., Mukai H., Taguchi Y., Kato I., Anfinsen C. B.. ( 1993a;). α-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Cloning and sequencing of the gene and expression in Escherichia coli.. J Biol Chem 268:, 24402–24407.[PubMed]
    [Google Scholar]
  39. Laderman K. A., Davis B. R., Krutzsch H. C., Lewis M. S., Griko Y. V., Privalov P. L., Anfinsen C. B.. ( 1993b;). The purification and characterization of an extremely thermostable α-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus.. J Biol Chem 268:, 24394–24401.[PubMed]
    [Google Scholar]
  40. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  41. Laskowski R. A., MacArthur M. W., Moss D. S., Thornton J. M.. ( 1993;). PROCHECK: a program to check the stereochemical quality of protein structures. . J Appl Cryst 26:, 283–291. [CrossRef]
    [Google Scholar]
  42. Laskowski R. A., Hutchinson E. G., Michie A. D., Wallace A. C., Jones M. L., Thornton J. M.. ( 1997;). PDBsum: a Web-based database of summaries and analyses of all PDB structures. . Trends Biochem Sci 22:, 488–490. [CrossRef][PubMed]
    [Google Scholar]
  43. Li X., Li D., Park K. H.. ( 2013;). An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan- and cyclodextrin-degrading activities. . Appl Microbiol Biotechnol 97:, 5359–5369. [CrossRef][PubMed]
    [Google Scholar]
  44. MacGregor E. A., Svensson B.. ( 1989;). A super-secondary structure predicted to be common to several α-1,4-d-glucan-cleaving enzymes. . Biochem J 259:, 145–152.[PubMed]
    [Google Scholar]
  45. MacGregor E. A., Janecek S., Svensson B.. ( 2001;). Relationship of sequence and structure to specificity in the α-amylase family of enzymes. . Biochim Biophys Acta 1546:, 1–20. [CrossRef][PubMed]
    [Google Scholar]
  46. Murakami T., Kanai T., Takata H., Kuriki T., Imanaka T.. ( 2006;). A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. . J Bacteriol 188:, 5915–5924. [CrossRef][PubMed]
    [Google Scholar]
  47. Nakajima M., Imamura H., Shoun H., Horinouchi S., Wakagi T.. ( 2004;). Transglycosylation activity of Dictyoglomus thermophilum amylase A. . Biosci Biotechnol Biochem 68:, 2369–2373. [CrossRef][PubMed]
    [Google Scholar]
  48. Page R. D.. ( 1996;). TreeView: an application to display phylogenetic trees on personal computers. . Comput Appl Biosci 12:, 357–358.[PubMed]
    [Google Scholar]
  49. Palomo M., Pijning T., Booiman T., Dobruchowska J. M., van der Vlist J., Kralj S., Planas A., Loos K., Kamerling J. P.. & other authors ( 2011;). Thermus thermophilus glycoside hydrolase family 57 branching enzyme: crystal structure, mechanism of action, and products formed. . J Biol Chem 286:, 3520–3530. [CrossRef][PubMed]
    [Google Scholar]
  50. Pujadas G., Ramírez F. M., Valero R., Palau J.. ( 1996;). Evolution of β-amylase: patterns of variation and conservation in subfamily sequences in relation to parsimony mechanisms. . Proteins 25:, 456–472. [CrossRef][PubMed]
    [Google Scholar]
  51. Punta M., Coggill P. C., Eberhardt R. Y., Mistry J., Tate J., Boursnell C., Pang N., Forslund K., Ceric G.. & other authors ( 2012;). The Pfam protein families database. . Nucleic Acids Res 40: (Database issue), D290–D301. [CrossRef][PubMed]
    [Google Scholar]
  52. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  53. Santos C. R., Tonoli C. C., Trindade D. M., Betzel C., Takata H., Kuriki T., Kanai T., Imanaka T., Arni R. K., Murakami M. T.. ( 2011;). Structural basis for branching-enzyme activity of glycoside hydrolase family 57: structure and stability studies of a novel branching enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. . Proteins 79:, 547–557. [CrossRef][PubMed]
    [Google Scholar]
  54. Shatsky M., Nussinov R., Wolfson H. J.. ( 2004;). A method for simultaneous alignment of multiple protein structures. . Proteins 56:, 143–156. [CrossRef][PubMed]
    [Google Scholar]
  55. Smith A. M., Zeeman S. C., Smith S. M.. ( 2005;). Starch degradation. . Annu Rev Plant Biol 56:, 73–98. [CrossRef][PubMed]
    [Google Scholar]
  56. Tachibana Y., Fujiwara S., Takagi M., Imanaka T.. ( 1997;). Cloning and expression of the 4-α-glucanotransferase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme. . J Ferment Bioeng 83:, 540–548. [CrossRef]
    [Google Scholar]
  57. Takata H., Kuriki T., Okada S., Takesada Y., Iizuka M., Minamiura N., Imanaka T.. ( 1992;). Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at α-(1–4)- and α-(1–6)-glucosidic linkages. . J Biol Chem 267:, 18447–18452.[PubMed]
    [Google Scholar]
  58. UniProt Consortium ( 2012;). Reorganizing the protein space at the Universal Protein Resource (UniProt). . Nucleic Acids Res 40: (Database issue), D71–D75. [CrossRef][PubMed]
    [Google Scholar]
  59. van Lieshout J. F. T., Verhees C. H., Ettema T. J. G., van der Sar S., Imamura H.,, Matsuzawa H.,, van der Oost J., de Vos W. M.. ( 2003;). Identification and molecular characterization of a novel type of α-galactosidase from Pyrococcus furiosus.. Biocatalysis Biotransformation 21:, 243–252. [CrossRef]
    [Google Scholar]
  60. Wang H., Gong Y., Xie W., Xiao W., Wang J., Zheng Y., Hu J., Liu Z.. ( 2011;). Identification and characterization of a novel thermostable gh-57 gene from metagenomic fosmid library of the Juan de Fuca Ridge hydrothermal vent. . Appl Biochem Biotechnol 164:, 1323–1338. [CrossRef][PubMed]
    [Google Scholar]
  61. Watanabe H., Nishimoto T., Kubota M., Chaen H., Fukuda S.. ( 2006;). Cloning, sequencing, and expression of the genes encoding an isocyclomaltooligosaccharide glucanotransferase and an α-amylase from a Bacillus circulans strain. . Biosci Biotechnol Biochem 70:, 2690–2702. [CrossRef][PubMed]
    [Google Scholar]
  62. Zona R., Chang-Pi-Hin F., O’Donohue M. J., Janeček Š.. ( 2004;). Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis.. Eur J Biochem 271:, 2863–2872. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071084-0
Loading
/content/journal/micro/10.1099/mic.0.071084-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error