1887

Abstract

CspR has been characterized recently as a cold-shock RNA-binding protein in , a natural member of the gastro-intestinal tract capable of switching from a commensal relationship with the host to an important nosocomial pathogen. In addition to its involvement in the cold-shock response, CspR also plays a role in the long-term survival and virulence of . In the present study, we demonstrated that anti-CspR immune rabbit serum protected larvae of against a lethal challenge of the WT strain. These results suggested that CspR might have a surface location. This hypothesis was verified by Western blot that showed detection of CspR in the total as well as in the surface protein fraction. In addition, identification of surface polypeptides by proteolytic shaving of intact bacterial cells followed by liquid chromatography-MS-MS revealed that cold-shock proteins (EF1367, EF2939 and CspR) were present on the cell surface. Lastly, anti-CspR immune rabbit serum was used for immunolabelling and detected with colloidal gold-labelled goat anti-rabbit IgG in order to determine the immunolocalization of CspR on WT strain. Electron microscopy images confirmed that the cold-shock protein RNA-binding protein CspR was present in both cytoplasmic and surface parts of the cell. These data strongly suggest that CspR, in addition to being located intracellularly, is also present in the extracellular protein fraction of the cells and has important functions in the infection process of larvae.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071076-0
2013-10-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2153.html?itemId=/content/journal/micro/10.1099/mic.0.071076-0&mimeType=html&fmt=ahah

References

  1. Archambaud C., Nahori M.-A., Pizarro-Cerda J., Cossart P., Dussurget O.. ( 2006;). Control of Listeria superoxide dismutase by phosphorylation. . J Biol Chem 281:, 31812–31822. [CrossRef][PubMed]
    [Google Scholar]
  2. Becher D., Hempel K., Sievers S., Zühlke D., Pané-Farré J., Otto A., Fuchs S., Albrecht D., Bernhardt J.. & other authors ( 2009;). A proteomic view of an important human pathogen–towards the quantification of the entire Staphylococcus aureus proteome. . PLoS ONE 4:, e8176. [CrossRef][PubMed]
    [Google Scholar]
  3. Benachour A., Morin T., Hébert L., Budin-Verneuil A., Le Jeune A., Auffray Y., Pichereau V.. ( 2009;). Identification of secreted and surface proteins from Enterococcus faecalis. . Can J Microbiol 55:, 967–974. [CrossRef][PubMed]
    [Google Scholar]
  4. Bendtsen J. D., Kiemer L., Fausbøll A., Brunak S.. ( 2005;). Non-classical protein secretion in bacteria. . BMC Microbiol 5:, 58. [CrossRef][PubMed]
    [Google Scholar]
  5. Boël G., Pichereau V., Mijakovic I., Mazé A., Poncet S., Gillet S., Giard J.-C., Hartke A., Auffray Y., Deutscher J.. ( 2004;). Is 2-phosphoglycerate-dependent automodification of bacterial enolases implicated in their export?. J Mol Biol 337:, 485–496. [CrossRef][PubMed]
    [Google Scholar]
  6. Bøhle L. A., Riaz T., Egge-Jacobsen W., Skaugen M., Busk Ø. L., Eijsink V. G. H., Mathiesen G.. ( 2011;). Identification of surface proteins in Enterococcus faecalis V583. . BMC Genomics 12:, 135. [CrossRef][PubMed]
    [Google Scholar]
  7. Brennan R. G., Link T. M.. ( 2007;). Hfq structure, function and ligand binding. . Curr Opin Microbiol 10:, 125–133. [CrossRef][PubMed]
    [Google Scholar]
  8. Chao Y., Vogel J.. ( 2010;). The role of Hfq in bacterial pathogens. . Curr Opin Microbiol 13:, 24–33. [CrossRef][PubMed]
    [Google Scholar]
  9. Christiansen J. K., Larsen M. H., Ingmer H., Søgaard-Andersen L., Kallipolitis B. H.. ( 2004;). The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. . J Bacteriol 186:, 3355–3362. [CrossRef][PubMed]
    [Google Scholar]
  10. Duval B. D., Mathew A., Satola S. W., Shafer W. M.. ( 2010;). Altered growth, pigmentation, and antimicrobial susceptibility properties of Staphylococcus aureus due to loss of the major cold shock gene cspB. . Antimicrob Agents Chemother 54:, 2283–2290. [CrossRef][PubMed]
    [Google Scholar]
  11. Ermolenko D. N., Makhatadze G. I.. ( 2002;). Bacterial cold-shock proteins. . Cell Mol Life Sci 59:, 1902–1913. [CrossRef][PubMed]
    [Google Scholar]
  12. Fox K. A., Ramesh A., Stearns J. E., Bourgogne A., Reyes-Jara A., Winkler W. C., Garsin D. A.. ( 2009;). Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in Enterococcus faecalis. . Proc Natl Acad Sci U S A 106:, 4435–4440. [CrossRef][PubMed]
    [Google Scholar]
  13. Giard J. C., Rince A., Capiaux H., Auffray Y., Hartke A.. ( 2000;). Inactivation of the stress- and starvation-inducible gls24 operon has a pleiotrophic effect on cell morphology, stress sensitivity, and gene expression in Enterococcus faecalis. . J Bacteriol 182:, 4512–4520. [CrossRef][PubMed]
    [Google Scholar]
  14. Gilmore M. S., Coburn P., Nallapareddy S., Murray B.. ( 2002;). Enterococcal virulence. . In The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance, pp. 301–354. Edited by Gilmore M. S... Washington, DC:: ASM Press;.
  15. Godreuil S., Galimand M., Gerbaud G., Jacquet C., Courvalin P.. ( 2003;). Efflux pump Lde is associated with fluoroquinolone resistance in Listeria monocytogenes. . Antimicrob Agents Chemother 47:, 704–708. [CrossRef][PubMed]
    [Google Scholar]
  16. Graumann P., Marahiel M. A.. ( 1996;). Some like it cold: response of microorganisms to cold shock. . Arch Microbiol 166:, 293–300. [CrossRef][PubMed]
    [Google Scholar]
  17. Graumann P. L., Marahiel M. A.. ( 1998;). A superfamily of proteins that contain the cold-shock domain. . Trends Biochem Sci 23:, 286–290. [CrossRef][PubMed]
    [Google Scholar]
  18. Graumann P. L., Marahiel M. A.. ( 1999;). Cold shock proteins CspB and CspC are major stationary-phase-induced proteins in Bacillus subtilis. . Arch Microbiol 171:, 135–138. [CrossRef][PubMed]
    [Google Scholar]
  19. Graumann P., Wendrich T. M., Weber M. H., Schröder K., Marahiel M. A.. ( 1997;). A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. . Mol Microbiol 25:, 741–756. [CrossRef][PubMed]
    [Google Scholar]
  20. Gualerzi C. O., Giuliodori A. M., Pon C. L.. ( 2003;). Transcriptional and post-transcriptional control of cold-shock genes. . J Mol Biol 331:, 527–539. [CrossRef][PubMed]
    [Google Scholar]
  21. Hancock L. E., Gilmore M. S.. ( 2002;). The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall. . Proc Natl Acad Sci U S A 99:, 1574–1579. [CrossRef][PubMed]
    [Google Scholar]
  22. Hempel K., Herbst F.-A., Moche M., Hecker M., Becher D.. ( 2011;). Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions. . J Proteome Res 10:, 1657–1666. [CrossRef][PubMed]
    [Google Scholar]
  23. Horn G., Hofweber R., Kremer W., Kalbitzer H. R.. ( 2007;). Structure and function of bacterial cold shock proteins. . Cell Mol Life Sci 64:, 1457–1470. [CrossRef][PubMed]
    [Google Scholar]
  24. Huebner J., Quaas A., Krueger W. A., Goldmann D. A., Pier G. B.. ( 2000;). Prophylactic and therapeutic efficacy of antibodies to a capsular polysaccharide shared among vancomycin-sensitive and -resistant enterococci. . Infect Immun 68:, 4631–4636. [CrossRef][PubMed]
    [Google Scholar]
  25. Joyce S. A., Gahan C. G. M.. ( 2010;). Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella. . Microbiology 156:, 3456–3468. [CrossRef][PubMed]
    [Google Scholar]
  26. Junqueira J. C.. ( 2012;). Galleria mellonella as a model host for human pathogens: recent studies and new perspectives. . Virulence 3:, 474–476. [CrossRef][PubMed]
    [Google Scholar]
  27. Kint G., Sonck K. A., Schoofs G., De Coster D., Vanderleyden J., De Keersmaecker S. C.. ( 2009;). 2D proteome analysis initiates new insights on the Salmonella Typhimurium LuxS protein. . BMC Microbiol 9:, 198. [CrossRef][PubMed]
    [Google Scholar]
  28. Lebreton F., Riboulet-Bisson E., Serror P., Sanguinetti M., Posteraro B., Torelli R., Hartke A., Auffray Y., Giard J.-C.. ( 2009;). ace, Which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. . Infect Immun 77:, 2832–2839. [CrossRef][PubMed]
    [Google Scholar]
  29. Maddalo G., Chovanec P., Stenberg-Bruzell F., Nielsen H. V., Jensen-Seaman M. I., Ilag L. L., Kline K. A., Daley D. O.. ( 2011;). A reference map of the membrane proteome of Enterococcus faecalis. . Proteomics 11:, 3935–3941. [CrossRef][PubMed]
    [Google Scholar]
  30. Mallick A. I., Singha H., Khan S., Anwar T., Ansari M. A., Khalid R., Chaudhuri P., Owais M.. ( 2007;). Escheriosome-mediated delivery of recombinant ribosomal L7/L12 protein confers protection against murine brucellosis. . Vaccine 25:, 7873–7884. [CrossRef][PubMed]
    [Google Scholar]
  31. Michaux C., Sanguinetti M., Reffuveille F., Auffray Y., Posteraro B., Gilmore M. S., Hartke A., Giard J.-C.. ( 2011;). SlyA is a transcriptional regulator involved in the virulence of Enterococcus faecalis. . Infect Immun 79:, 2638–2645. [CrossRef][PubMed]
    [Google Scholar]
  32. Michaux C., Martini C., Shioya K., Ahmed Lecheheb S., Budin-Verneuil A., Cosette P., Sanguinetti M., Hartke A., Verneuil N., Giard J.-C.. ( 2012;). CspR, a cold shock RNA-binding protein involved in the long-term survival and the virulence of Enterococcus faecalis. . J Bacteriol 194:, 6900–6908. [CrossRef][PubMed]
    [Google Scholar]
  33. Murray B. E.. ( 1990;). The life and times of the Enterococcus. . Clin Microbiol Rev 3:, 46–65.[PubMed]
    [Google Scholar]
  34. Ogier J.-C., Serror P.. ( 2008;). Safety assessment of dairy microorganisms: the Enterococcus genus. . Int J Food Microbiol 126:, 291–301. [CrossRef][PubMed]
    [Google Scholar]
  35. Phadtare S., Inouye M.. ( 1999;). Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli. . Mol Microbiol 33:, 1004–1014. [CrossRef][PubMed]
    [Google Scholar]
  36. Qin X., Singh K. V., Weinstock G. M., Murray B. E.. ( 2001;). Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. . J Bacteriol 183:, 3372–3382. [CrossRef][PubMed]
    [Google Scholar]
  37. Reffuveille F., Serror P., Chevalier S., Budin-Verneuil A., Ladjouzi R., Bernay B., Auffray Y., Rincé A.. ( 2012;). The prolipoprotein diacylglyceryl transferase (Lgt) of Enterococcus faecalis contributes to virulence. . Microbiology 158:, 816–825. [CrossRef][PubMed]
    [Google Scholar]
  38. Riboulet-Bisson E., Sanguinetti M., Budin-Verneuil A., Auffray Y., Hartke A., Giard J.-C.. ( 2008;). Characterization of the Ers regulon of Enterococcus faecalis. . Infect Immun 76:, 3064–3074. [CrossRef][PubMed]
    [Google Scholar]
  39. Rigottier-Gois L., Alberti A., Houel A., Taly J.-F., Palcy P., Manson J., Pinto D., Matos R. C., Carrilero L.. & other authors ( 2011;). Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors. . PLoS ONE 6:, e29023. [CrossRef][PubMed]
    [Google Scholar]
  40. Schaumburg J., Diekmann O., Hagendorff P., Bergmann S., Rohde M., Hammerschmidt S., Jänsch L., Wehland J., Kärst U.. ( 2004;). The cell wall subproteome of Listeria monocytogenes. . Proteomics 4:, 2991–3006. [CrossRef][PubMed]
    [Google Scholar]
  41. Schröder K., Graumann P., Schnuchel A., Holak T. A., Marahiel M. A.. ( 1995;). Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. . Mol Microbiol 16:, 699–708. [CrossRef][PubMed]
    [Google Scholar]
  42. Shankar N., Lockatell C. V., Baghdayan A. S., Drachenberg C., Gilmore M. S., Johnson D. E.. ( 2001;). Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. . Infect Immun 69:, 4366–4372. [CrossRef][PubMed]
    [Google Scholar]
  43. Shepard B. D., Gilmore M. S.. ( 2002;). Differential expression of virulence-related genes in Enterococcus faecalis in response to biological cues in serum and urine. . Infect Immun 70:, 4344–4352. [CrossRef][PubMed]
    [Google Scholar]
  44. Singh K. V., Murray B. E.. ( 2012;). Efficacy of ceftobiprole Medocaril against Enterococcus faecalis in a murine urinary tract infection model. . Antimicrob Agents Chemother 56:, 3457–3460. [CrossRef][PubMed]
    [Google Scholar]
  45. Singh K. V., Nallapareddy S. R., Murray B. E.. ( 2007;). Importance of the ebp (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. . J Infect Dis 195:, 1671–1677. [CrossRef][PubMed]
    [Google Scholar]
  46. Spehner D., Cavalier A.. ( 2008;). Progressive lowering of temperature for immunolabeling and in situ hybridization. . In Handbook of Cryo-Preparation Methods for Electron Microscopy, pp. 433–465. Edited by Cavalier A., Spehner D., Humbel B... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  47. Sreeja S., Babu P R S., Prathab A. G.. ( 2012;). The prevalence and the characterization of the enterococcus species from various clinical samples in a tertiary care hospital. . J Clin Diagn Res 6:, 1486–1488.[PubMed]
    [Google Scholar]
  48. Sun X., Zhulin I., Wartell R. M.. ( 2002;). Predicted structure and phyletic distribution of the RNA-binding protein Hfq. . Nucleic Acids Res 30:, 3662–3671. [CrossRef][PubMed]
    [Google Scholar]
  49. Teng F., Nannini E. C., Murray B. E.. ( 2005;). Importance of gls24 in virulence and stress response of Enterococcus faecalis and use of the Gls24 protein as a possible immunotherapy target. . J Infect Dis 191:, 472–480. [CrossRef][PubMed]
    [Google Scholar]
  50. Tjalsma H., Lambooy L., Hermans P. W., Swinkels D. W.. ( 2008;). Shedding & shaving: disclosure of proteomic expressions on a bacterial face. . Proteomics 8:, 1415–1428. [CrossRef][PubMed]
    [Google Scholar]
  51. Vogel J., Luisi B. F.. ( 2011;). Hfq and its constellation of RNA. . Nat Rev Microbiol 9:, 578–589. [CrossRef][PubMed]
    [Google Scholar]
  52. Voland P., Weeks D. L., Vaira D., Prinz C., Sachs G.. ( 2002;). Specific identification of three low molecular weight membrane-associated antigens of Helicobacter pylori. . Aliment Pharmacol Ther 16:, 533–544. [CrossRef][PubMed]
    [Google Scholar]
  53. Webster P., Schwarz H., Griffiths G.. ( 2008;). Preparation of cells and tissues for immuno EM. . Methods Cell Biol 88:, 45–58. [CrossRef][PubMed]
    [Google Scholar]
  54. Wisplinghoff H., Bischoff T., Tallent S. M., Seifert H., Wenzel R. P., Edmond M. B.. ( 2004;). Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. . Clin Infect Dis 39:, 309–317. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071076-0
Loading
/content/journal/micro/10.1099/mic.0.071076-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error