Lipid dependencies, biogenesis and cytoplasmic micellar forms of integral membrane sugar transport proteins of the bacterial phosphotransferase system Free

Abstract

Permeases of the prokaryotic phosphoenolpyruvate–sugar phosphotransferase system (PTS) catalyse sugar transport coupled to sugar phosphorylation. The lipid composition of a membrane determines the activities of these enzyme/transporters as well as the degree of coupling of phosphorylation to transport. We have investigated mechanisms of PTS permease biogenesis and identified cytoplasmic (soluble) forms of these integral membrane proteins. We found that the catalytic activities of the soluble forms differ from those of the membrane-embedded forms. Transport via the latter is much more sensitive to lipid composition than to phosphorylation, and some of these enzymes are much more sensitive to the lipid environment than others. While the membrane-embedded PTS permeases are always dimeric, the cytoplasmic forms are micellar, either monomeric or dimeric. Scattered published evidence suggests that other integral membrane proteins also exist in cytoplasmic micellar forms. The possible functions of cytoplasmic PTS permeases in biogenesis, intracellular sugar phosphorylation and permease storage are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070953-0
2013-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2213.html?itemId=/content/journal/micro/10.1099/mic.0.070953-0&mimeType=html&fmt=ahah

References

  1. Aboulwafa M., Saier M. H. Jr( 2002). Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidyl glycerol in Escherichia coli: studies with a pgsA mutant lacking phosphatidyl glycerophosphate synthase. Res Microbiol 153:667–677 [View Article][PubMed]
    [Google Scholar]
  2. Aboulwafa M., Saier M. H. Jr( 2003). Soluble sugar permeases of the phosphotransferase system in Escherichia coli: evidence for two physically distinct forms of the proteins in vivo. Mol Microbiol 48:131–141 [View Article][PubMed]
    [Google Scholar]
  3. Aboulwafa M., Saier M. H. Jr( 2004). Characterization of soluble enzyme II complexes of the Escherichia coli phosphotransferase system. J Bacteriol 186:8453–8462 [View Article][PubMed]
    [Google Scholar]
  4. Aboulwafa M., Saier M. H. Jr( 2007). In vitro interconversion of the soluble and membrane-integrated forms of the Escherichia coli glucose enzyme II of the phosphoenolpyruvate-dependent sugar-transporting phosphotransferase system. J Mol Microbiol Biotechnol 12:263–268 [View Article][PubMed]
    [Google Scholar]
  5. Aboulwafa M., Saier M. H. Jr( 2008). Characterization of the E. coli glucose permease fused to the maltose-binding protein. J Basic Microbiol 48:3–9 [View Article][PubMed]
    [Google Scholar]
  6. Aboulwafa M., Saier M. H. Jr( 2011). Biophysical studies of the membrane-embedded and cytoplasmic forms of the glucose-specific Enzyme II of the E. coli phosphotransferase system (PTS). PLoS ONE 6:e24088 [View Article][PubMed]
    [Google Scholar]
  7. Aboulwafa M., Chung Y. J., Wai H. H., Saier M. H. Jr( 2003). Studies on the Escherichia coli glucose-specific permease, PtsG, with a point mutation in its N-terminal amphipathic leader sequence. Microbiology 149:763–771 [View Article][PubMed]
    [Google Scholar]
  8. Aboulwafa M., Hvorup R., Saier M. H. Jr( 2004). Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase. Arch Microbiol 181:26–34 [View Article][PubMed]
    [Google Scholar]
  9. Beck K., Eisner G., Trescher D., Dalbey R. E., Brunner J., Müller M.( 2001). YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep 2:709–714 [View Article][PubMed]
    [Google Scholar]
  10. Bibi E.( 2011). Early targeting events during membrane protein biogenesis in Escherichia coli. Biochim Biophys Acta 1808:841–850 [View Article][PubMed]
    [Google Scholar]
  11. Bogdanov M., Dowhan W.( 1998). Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO J 17:5255–5264 [View Article][PubMed]
    [Google Scholar]
  12. Busch W., Saier M. H. Jr( 2002). The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol 37:287–337 [View Article][PubMed]
    [Google Scholar]
  13. Chan H., Babayan V., Blyumin E., Gandhi C., Hak K., Harake D., Kumar K., Lee P., Li T. T. et al.( 2010). The p-type ATPase superfamily. J Mol Microbiol Biotechnol 19:5–104 [View Article][PubMed]
    [Google Scholar]
  14. Dalbey R. E., Chen M.( 2004). Sec-translocase mediated membrane protein biogenesis. Biochim Biophys Acta 1694:37–53 [View Article][PubMed]
    [Google Scholar]
  15. Deutscher J., Francke C., Postma P. W.( 2006). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031 [View Article][PubMed]
    [Google Scholar]
  16. Dillon D. A., Wu W.-I., Riedel B., Wissing J. B., Dowhan W., Carman G. M.( 1996). The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity. J Biol Chem 271:30548–30553 [View Article][PubMed]
    [Google Scholar]
  17. Dowhan W., Bogdanov M.( 2009). Lipid-dependent membrane protein topogenesis. Annu Rev Biochem 78:515–540 [View Article][PubMed]
    [Google Scholar]
  18. Dowhan W., Bogdanov M.( 2012). Molecular genetic and biochemical approaches for defining lipid-dependent membrane protein folding. Biochim Biophys Acta 1818:1097–1107 [View Article][PubMed]
    [Google Scholar]
  19. Driessen A. J., Nouwen N.( 2008). Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667 [View Article][PubMed]
    [Google Scholar]
  20. Francetic O., Buddelmeijer N., Lewenza S., Kumamoto C. A., Pugsley A. P.( 2007). Signal recognition particle-dependent inner membrane targeting of the PulG Pseudopilin component of a type II secretion system. J Bacteriol 189:1783–1793 [View Article][PubMed]
    [Google Scholar]
  21. Gatti L., Cossa G., Beretta G. L., Zaffaroni N., Perego P.( 2011). Novel insights into targeting ATP-binding cassette transporters for antitumor therapy. Curr Med Chem 18:4237–4249 [View Article][PubMed]
    [Google Scholar]
  22. Guan L., Smirnova I. N., Verner G., Nagamori S., Kaback H. R.( 2006). Manipulating phospholipids for crystallization of a membrane transport protein. Proc Natl Acad Sci U S A 103:1723–1726 [View Article][PubMed]
    [Google Scholar]
  23. Hvorup R., Chang A. B., Saier M. H. Jr( 2003). Bioinformatic analyses of the bacterial L-ascorbate phosphotransferase system permease family. J Mol Microbiol Biotechnol 6:191–205 [View Article][PubMed]
    [Google Scholar]
  24. Ito K., Akiyama Y.( 1991). In vivo analysis of integration of membrane proteins in Escherichia coli. Mol Microbiol 5:2243–2253 [View Article][PubMed]
    [Google Scholar]
  25. Kaback H. R.( 1968). The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli. J Biol Chem 243:3711–3724[PubMed]
    [Google Scholar]
  26. Kaback H. R.( 1970). Transport. Annu Rev Biochem 39:561–598 [View Article][PubMed]
    [Google Scholar]
  27. Kaup B., Bringer-Meyer S., Sahm H.( 2003). Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Commun Agric Appl Biol Sci 68:2 part A235–240[PubMed]
    [Google Scholar]
  28. Kawashima Y., Miyazaki E., Müller M., Tokuda H., Nishiyama K.( 2008). Diacylglycerol specifically blocks spontaneous integration of membrane proteins and allows detection of a factor-assisted integration. J Biol Chem 283:24489–24496 [View Article][PubMed]
    [Google Scholar]
  29. Kearns B. G., McGee T. P., Mayinger P., Gedvilaite A., Phillips S. E., Kagiwada S., Bankaitis V. A.( 1997). Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387:101–105 [View Article][PubMed]
    [Google Scholar]
  30. Koch H. G., Müller M.( 2000). Dissecting the translocase and integrase functions of the Escherichia coli SecYEG translocon. J Cell Biol 150:689–694 [View Article][PubMed]
    [Google Scholar]
  31. Koch H. G., Hengelage T., Neumann-Haefelin C., MacFarlane J., Hoffschulte H. K., Schimz K. L., Mechler B., Müller M.( 1999). In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Mol Biol Cell 10:2163–2173 [View Article][PubMed]
    [Google Scholar]
  32. Kundig W., Roseman S.( 1971). Sugar transport. II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system. J Biol Chem 246:1407–1418[PubMed]
    [Google Scholar]
  33. Lam V. H., Lee J. H., Silverio A., Chan H., Gomolplitinant K. M., Povolotsky T. L., Orlova E., Sun E. I., Welliver C. H., Saier M. H. Jr( 2011). Pathways of transport protein evolution: recent advances. Biol Chem 392:5–12 [View Article][PubMed]
    [Google Scholar]
  34. Lengeler J. W., Jahreis K.( 2009). Bacterial PEP-dependent carbohydrate: phosphotransferase systems couple sensing and global control mechanisms. Contrib Microbiol 16:65–87 [View Article][PubMed]
    [Google Scholar]
  35. Leonard J. E., Saier M. H. Jr( 1983). Mannitol-specific enzyme II of the bacterial phosphotransferase system. II. Reconstitution of vectorial transphosphorylation in phospholipid vesicles. J Biol Chem 258:10757–10760[PubMed]
    [Google Scholar]
  36. Lorca G. L., Barabote R. D., Zlotopolski V., Tran C., Winnen B., Hvorup R. N., Stonestrom A. J., Nguyen E., Huang L. W. et al.( 2007). Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses. Biochim Biophys Acta 1768:1342–1366 [View Article][PubMed]
    [Google Scholar]
  37. Luirink J., von Heijne G., Houben E., de Gier J.-W.( 2005). Biogenesis of inner membrane proteins in Escherichia coli. Annu Rev Microbiol 59:329–355 [View Article][PubMed]
    [Google Scholar]
  38. Meadow N. D., Fox D. K., Roseman S.( 1990). The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem 59:497–542 [View Article][PubMed]
    [Google Scholar]
  39. Meijberg W., Schuurman-Wolters G. K., Boer H., Scheek R. M., Robillard G. T.( 1998). The thermal stability and domain interactions of the mannitol permease of Escherichia coli. A differential scanning calorimetry study. J Biol Chem 273:20785–20794 [View Article][PubMed]
    [Google Scholar]
  40. Milner L. S., Kaback H. R.( 1970). The role of phosphatidylglycerol in the vectorial phosphorylation of sugar by isolated bacterial membrane preparations. Proc Natl Acad Sci U S A 65:683–690 [View Article][PubMed]
    [Google Scholar]
  41. Mohammadi T., van Dam V., Sijbrandi R., Vernet T., Zapun A., Bouhss A., Diepeveen-de Bruin M., Nguyen-Distèche M., de Kruijff B., Breukink E.( 2011). Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J 30:1425–1432 [View Article][PubMed]
    [Google Scholar]
  42. Mukhija S., Erni B.( 1996). Purification by Ni2+ affinity chromatography, and functional reconstitution of the transporter for N-acetylglucosamine of Escherichia coli. J Biol Chem 271:14819–14824 [View Article][PubMed]
    [Google Scholar]
  43. Nannenga B. L., Baneyx F.( 2011). Enhanced expression of membrane proteins in E. coli with a P(BAD) promoter mutant: synergies with chaperone pathway engineering strategies. Microb Cell Fact 10:105 [View Article][PubMed]
    [Google Scholar]
  44. Natale P., Brüser T., Driessen A. J.( 2008). Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane–distinct translocases and mechanisms. Biochim Biophys Acta 1778:1735–1756 [View Article][PubMed]
    [Google Scholar]
  45. Neumann-Haefelin C., Schäfer U., Müller M., Koch H. G.( 2000). SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J 19:6419–6426 [View Article][PubMed]
    [Google Scholar]
  46. Nishiyama K., Ikegami A., Moser M., Schiltz E., Tokuda H., Müller M.( 2006). A derivative of lipid A is involved in signal recognition particle/SecYEG-dependent and -independent membrane integrations. J Biol Chem 281:35667–35676 [View Article][PubMed]
    [Google Scholar]
  47. Paulsen I. T., Nguyen L., Sliwinski M. K., Rabus R., Saier M. H. Jr( 2000). Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol 301:75–100 [View Article][PubMed]
    [Google Scholar]
  48. Pflüger-Grau K., Görke B.( 2010). Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 18:205–214 [View Article][PubMed]
    [Google Scholar]
  49. Pop O. I., Soprova Z., Koningstein G., Scheffers D. J., van Ulsen P., Wickström D., de Gier J. W., Luirink J.( 2009). YidC is required for the assembly of the MscL homopentameric pore. FEBS J 276:4891–4899 [View Article][PubMed]
    [Google Scholar]
  50. Postma P. W., Lengeler J. W., Jacobson G. R.( 1993). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594[PubMed]
    [Google Scholar]
  51. Raine A., Ullers R., Pavlov M., Luirink J., Wikberg J. E., Ehrenberg M.( 2003). Targeting and insertion of heterologous membrane proteins in E. coli. Biochimie 85:659–668 [View Article][PubMed]
    [Google Scholar]
  52. Rephaeli A. W., Saier M. H. Jr( 1978). Kinetic analyses of the sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system. J Biol Chem 253:7595–7597[PubMed]
    [Google Scholar]
  53. Rettner R. E., Saier M. H. Jr( 2010). The autoinducer-2 exporter superfamily. J Mol Microbiol Biotechnol 18:195–205 [View Article][PubMed]
    [Google Scholar]
  54. Robillard G. T., Blaauw M.( 1987). Enzyme II of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: protein-protein and protein-phospholipid interactions. Biochemistry 26:5796–5803 [View Article][PubMed]
    [Google Scholar]
  55. Roepe P. D., Kaback H. R.( 1989). Characterization and functional reconstitution of a soluble form of the hydrophobic membrane protein lac permease from Escherichia coli. Proc Natl Acad Sci U S A 86:6087–6091 [View Article][PubMed]
    [Google Scholar]
  56. Roepe P. D., Kaback H. R.( 1990). Isolation and functional reconstitution of soluble melibiose permease from Escherichia coli. Biochemistry 29:2572–2577 [View Article][PubMed]
    [Google Scholar]
  57. Saier M. H. Jr( 1989). Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev 53:109–120[PubMed]
    [Google Scholar]
  58. Saier M. H. Jr, Newman M. J.( 1976). Direct transfer of the phosphoryl moiety of mannitol 1-phosphate to [14C]mannitol catalyzed by the enzyme II complexes of the phosphoenolpyruvate: mannitol phosphotransferase systems in Spirochaeta aurantia and Salmonella typhimurium. J Biol Chem 251:3834–3837[PubMed]
    [Google Scholar]
  59. Saier M. H. Jr, Schmidt M. R.( 1981). Vectorial and nonvectorial transphosphorylation catalyzed by enzymes II of the bacterial phosphotransferase system. J Bacteriol 145:391–397[PubMed]
    [Google Scholar]
  60. Saier M. H. Jr, Feucht B. U., Roseman S.( 1971). Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria. J Biol Chem 246:7819–7821[PubMed]
    [Google Scholar]
  61. Saier M. H. Jr, Bromberg F. G., Roseman S.( 1973). Characterization of constitutive galactose permease mutants in Salmonella typhimurium. J Bacteriol 113:512–514[PubMed]
    [Google Scholar]
  62. Saier M. H. Jr, Cox D. F., Moczydlowski E. G.( 1977a). Sugar phosphate:sugar transphosphorylation coupled to exchange group translocation catalyzed by the enzyme II complexes of the phosphoenolpyruvate:sugar phosphotransferase system in membrane vesicles of Escherichia coli. J Biol Chem 252:8908–8916[PubMed]
    [Google Scholar]
  63. Saier M. H. Jr, Feucht B. U., Mora W. K.( 1977b). Sugar phosphate: sugar transphosphorylation and exchange group translocation catalyzed by the enzyme 11 complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem 252:8899–8907[PubMed]
    [Google Scholar]
  64. Saier M. H. Jr, Chauvaux S., Cook G. M., Deutscher J., Paulsen I. T., Reizer J., Ye J. J.( 1996). Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142:217–230 [View Article][PubMed]
    [Google Scholar]
  65. Saier M. H., Hvorup R. N., Barabote R. D.( 2005). Evolution of the bacterial phosphotransferase system: from carriers and enzymes to group translocators. Biochem Soc Trans 33:220–224 [View Article][PubMed]
    [Google Scholar]
  66. Simoni R. D., Levinthal M., Kundig F. D., Kundig W., Anderson B., Hartman P. E., Roseman S.( 1967). Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport. Proc Natl Acad Sci U S A 58:1963–1970 [View Article][PubMed]
    [Google Scholar]
  67. Slavic K., Krishna S., Derbyshire E. T., Staines H. M.( 2011). Plasmodial sugar transporters as anti-malarial drug targets and comparisons with other protozoa. Malar J 10:165 [View Article][PubMed]
    [Google Scholar]
  68. Stephan M. M., Jacobson G. R.( 1986). Subunit interactions of the Escherichia coli mannitol permease: correlation with enzymic activities. Biochemistry 25:4046–4051 [View Article][PubMed]
    [Google Scholar]
  69. Tchieu J. H., Norris V., Edwards J. S., Saier M. H. Jr( 2001). The complete phosphotransferase system in Escherichia coli. J Mol Microbiol Biotechnol 3:329–346[PubMed]
    [Google Scholar]
  70. Tyhach R. J., Hawrot E., Satre M., Kennedy E. P.( 1979). Increased synthesis of phosphatidylserine decarboxylase in a strain of Escherichia coli bearing a hybrid plasmid. Altered association of enzyme with the membrane. J Biol Chem 254:627–633[PubMed]
    [Google Scholar]
  71. van Bloois E., ten Hagen-Jongman C. M., Luirink J.( 2007). Flexibility in targeting and insertion during bacterial membrane protein biogenesis. Biochem Biophys Res Commun 362:727–733 [View Article][PubMed]
    [Google Scholar]
  72. van der Does C., Manting E. H., Kaufmann A., Lutz M., Driessen A. J.( 1998). Interaction between SecA and SecYEG in micellar solution and formation of the membrane-inserted state. Biochemistry 37:201–210 [View Article][PubMed]
    [Google Scholar]
  73. van Montfort B. A., Schuurman-Wolters G. K., Duurkens R. H., Mensen R., Poolman B., Robillard G. T.( 2001). Cysteine cross-linking defines part of the dimer and B/C domain interface of the Escherichia coli mannitol permease. J Biol Chem 276:12756–12763 [View Article][PubMed]
    [Google Scholar]
  74. van Montfort B. A., Schuurman-Wolters G. K., Wind J., Broos J., Robillard G. T., Poolman B.( 2002). Mapping of the dimer interface of the Escherichia coli mannitol permease by cysteine cross-linking. J Biol Chem 277:14717–14723 [View Article][PubMed]
    [Google Scholar]
  75. Wagner S., Pop O. I., Haan G. J., Baars L., Koningstein G., Klepsch M. M., Genevaux P., Luirink J., de Gier J. W.( 2008). Biogenesis of MalF and the MalFGK(2) maltose transport complex in Escherichia coli requires YidC. J Biol Chem 283:17881–17890 [View Article][PubMed]
    [Google Scholar]
  76. Welte T., Kudva R., Kuhn P., Sturm L., Braig D., Müller M., Warscheid B., Drepper F., Koch H. G.( 2012). Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol Biol Cell 23:464–479 [View Article][PubMed]
    [Google Scholar]
  77. Werner P. K., Saier M. H. Jr, Müller M.( 1992). Membrane insertion of the mannitol permease of Escherichia coli occurs under conditions of impaired SecA function. J Biol Chem 267:24523–24532[PubMed]
    [Google Scholar]
  78. Yamada Y., Chang Y. Y., Daniels G. A., Wu L. F., Tomich J. M., Yamada M., Saier M. H. Jr( 1991). Insertion of the mannitol permease into the membrane of Escherichia coli. Possible involvement of an N-terminal amphiphilic sequence. J Biol Chem 266:17863–17871[PubMed]
    [Google Scholar]
  79. Yen M. R., Chen J. S., Marquez J. L., Sun E. I., Saier M. H.( 2010). Multidrug resistance: phylogenetic characterization of superfamilies of secondary carriers that include drug exporters. Methods Mol Biol 637:47–64 [View Article][PubMed]
    [Google Scholar]
  80. Yi L., Celebi N., Chen M., Dalbey R. E.( 2004). Sec/SRP requirements and energetics of membrane insertion of subunits a, b, and c of the Escherichia coli F1F0 ATP synthase. J Biol Chem 279:39260–39267 [View Article][PubMed]
    [Google Scholar]
  81. Zen K. H., Consler T. G., Kaback H. R.( 1995). Insertion of the polytopic membrane protein lactose permease occurs by multiple mechanisms. Biochemistry 34:3430–3437 [View Article][PubMed]
    [Google Scholar]
  82. Zhang Y. M., Rock C. O.( 2008). Thematic review series: Glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis. J Lipid Res 49:1867–1874 [View Article][PubMed]
    [Google Scholar]
  83. Zhang Z., Feige J. N., Chang A. B., Anderson I. J., Brodianski V. M., Vitreschak A. G., Gelfand M. S., Saier M. H. Jr( 2003). A transporter of Escherichia coli specific for l- and d-methionine is the prototype for a new family within the ABC superfamily. Arch Microbiol 180:88–100 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070953-0
Loading
/content/journal/micro/10.1099/mic.0.070953-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed