1887

Abstract

Permeases of the prokaryotic phosphoenolpyruvate–sugar phosphotransferase system (PTS) catalyse sugar transport coupled to sugar phosphorylation. The lipid composition of a membrane determines the activities of these enzyme/transporters as well as the degree of coupling of phosphorylation to transport. We have investigated mechanisms of PTS permease biogenesis and identified cytoplasmic (soluble) forms of these integral membrane proteins. We found that the catalytic activities of the soluble forms differ from those of the membrane-embedded forms. Transport via the latter is much more sensitive to lipid composition than to phosphorylation, and some of these enzymes are much more sensitive to the lipid environment than others. While the membrane-embedded PTS permeases are always dimeric, the cytoplasmic forms are micellar, either monomeric or dimeric. Scattered published evidence suggests that other integral membrane proteins also exist in cytoplasmic micellar forms. The possible functions of cytoplasmic PTS permeases in biogenesis, intracellular sugar phosphorylation and permease storage are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070953-0
2013-11-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2213.html?itemId=/content/journal/micro/10.1099/mic.0.070953-0&mimeType=html&fmt=ahah

References

  1. Aboulwafa M., Saier M. H. Jr.( 2002;). Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidyl glycerol in Escherichia coli: studies with a pgsA mutant lacking phosphatidyl glycerophosphate synthase. Res Microbiol153:667–677 [CrossRef][PubMed]
    [Google Scholar]
  2. Aboulwafa M., Saier M. H. Jr.( 2003;). Soluble sugar permeases of the phosphotransferase system in Escherichia coli: evidence for two physically distinct forms of the proteins in vivo. Mol Microbiol48:131–141 [CrossRef][PubMed]
    [Google Scholar]
  3. Aboulwafa M., Saier M. H. Jr.( 2004;). Characterization of soluble enzyme II complexes of the Escherichia coli phosphotransferase system. J Bacteriol186:8453–8462 [CrossRef][PubMed]
    [Google Scholar]
  4. Aboulwafa M., Saier M. H. Jr.( 2007;). In vitro interconversion of the soluble and membrane-integrated forms of the Escherichia coli glucose enzyme II of the phosphoenolpyruvate-dependent sugar-transporting phosphotransferase system. J Mol Microbiol Biotechnol12:263–268 [CrossRef][PubMed]
    [Google Scholar]
  5. Aboulwafa M., Saier M. H. Jr.( 2008;). Characterization of the E. coli glucose permease fused to the maltose-binding protein. J Basic Microbiol48:3–9 [CrossRef][PubMed]
    [Google Scholar]
  6. Aboulwafa M., Saier M. H. Jr.( 2011;). Biophysical studies of the membrane-embedded and cytoplasmic forms of the glucose-specific Enzyme II of the E. coli phosphotransferase system (PTS). PLoS ONE6:e24088 [CrossRef][PubMed]
    [Google Scholar]
  7. Aboulwafa M., Chung Y. J., Wai H. H., Saier M. H. Jr.( 2003;). Studies on the Escherichia coli glucose-specific permease, PtsG, with a point mutation in its N-terminal amphipathic leader sequence. Microbiology149:763–771 [CrossRef][PubMed]
    [Google Scholar]
  8. Aboulwafa M., Hvorup R., Saier M. H. Jr.( 2004;). Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase. Arch Microbiol181:26–34 [CrossRef][PubMed]
    [Google Scholar]
  9. Beck K., Eisner G., Trescher D., Dalbey R. E., Brunner J., Müller M..( 2001;). YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep2:709–714 [CrossRef][PubMed]
    [Google Scholar]
  10. Bibi E..( 2011;). Early targeting events during membrane protein biogenesis in Escherichia coli. Biochim Biophys Acta1808:841–850 [CrossRef][PubMed]
    [Google Scholar]
  11. Bogdanov M., Dowhan W..( 1998;). Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO J17:5255–5264 [CrossRef][PubMed]
    [Google Scholar]
  12. Busch W., Saier M. H. Jr.( 2002;). The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol37:287–337 [CrossRef][PubMed]
    [Google Scholar]
  13. Chan H., Babayan V., Blyumin E., Gandhi C., Hak K., Harake D., Kumar K., Lee P., Li T. T. et al.( 2010;). The p-type ATPase superfamily. J Mol Microbiol Biotechnol19:5–104 [CrossRef][PubMed]
    [Google Scholar]
  14. Dalbey R. E., Chen M..( 2004;). Sec-translocase mediated membrane protein biogenesis. Biochim Biophys Acta1694:37–53 [CrossRef][PubMed]
    [Google Scholar]
  15. Deutscher J., Francke C., Postma P. W..( 2006;). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev70:939–1031 [CrossRef][PubMed]
    [Google Scholar]
  16. Dillon D. A., Wu W.-I., Riedel B., Wissing J. B., Dowhan W., Carman G. M..( 1996;). The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity. J Biol Chem271:30548–30553 [CrossRef][PubMed]
    [Google Scholar]
  17. Dowhan W., Bogdanov M..( 2009;). Lipid-dependent membrane protein topogenesis. Annu Rev Biochem78:515–540 [CrossRef][PubMed]
    [Google Scholar]
  18. Dowhan W., Bogdanov M..( 2012;). Molecular genetic and biochemical approaches for defining lipid-dependent membrane protein folding. Biochim Biophys Acta1818:1097–1107 [CrossRef][PubMed]
    [Google Scholar]
  19. Driessen A. J., Nouwen N..( 2008;). Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem77:643–667 [CrossRef][PubMed]
    [Google Scholar]
  20. Francetic O., Buddelmeijer N., Lewenza S., Kumamoto C. A., Pugsley A. P..( 2007;). Signal recognition particle-dependent inner membrane targeting of the PulG Pseudopilin component of a type II secretion system. J Bacteriol189:1783–1793 [CrossRef][PubMed]
    [Google Scholar]
  21. Gatti L., Cossa G., Beretta G. L., Zaffaroni N., Perego P..( 2011;). Novel insights into targeting ATP-binding cassette transporters for antitumor therapy. Curr Med Chem18:4237–4249 [CrossRef][PubMed]
    [Google Scholar]
  22. Guan L., Smirnova I. N., Verner G., Nagamori S., Kaback H. R..( 2006;). Manipulating phospholipids for crystallization of a membrane transport protein. Proc Natl Acad Sci U S A103:1723–1726 [CrossRef][PubMed]
    [Google Scholar]
  23. Hvorup R., Chang A. B., Saier M. H. Jr.( 2003;). Bioinformatic analyses of the bacterial L-ascorbate phosphotransferase system permease family. J Mol Microbiol Biotechnol6:191–205 [CrossRef][PubMed]
    [Google Scholar]
  24. Ito K., Akiyama Y..( 1991;). In vivo analysis of integration of membrane proteins in Escherichia coli. Mol Microbiol5:2243–2253 [CrossRef][PubMed]
    [Google Scholar]
  25. Kaback H. R..( 1968;). The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli. J Biol Chem243:3711–3724[PubMed]
    [Google Scholar]
  26. Kaback H. R..( 1970;). Transport. Annu Rev Biochem39:561–598 [CrossRef][PubMed]
    [Google Scholar]
  27. Kaup B., Bringer-Meyer S., Sahm H..( 2003;). Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Commun Agric Appl Biol Sci68:2 part A235–240[PubMed]
    [Google Scholar]
  28. Kawashima Y., Miyazaki E., Müller M., Tokuda H., Nishiyama K..( 2008;). Diacylglycerol specifically blocks spontaneous integration of membrane proteins and allows detection of a factor-assisted integration. J Biol Chem283:24489–24496 [CrossRef][PubMed]
    [Google Scholar]
  29. Kearns B. G., McGee T. P., Mayinger P., Gedvilaite A., Phillips S. E., Kagiwada S., Bankaitis V. A..( 1997;). Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature387:101–105 [CrossRef][PubMed]
    [Google Scholar]
  30. Koch H. G., Müller M..( 2000;). Dissecting the translocase and integrase functions of the Escherichia coli SecYEG translocon. J Cell Biol150:689–694 [CrossRef][PubMed]
    [Google Scholar]
  31. Koch H. G., Hengelage T., Neumann-Haefelin C., MacFarlane J., Hoffschulte H. K., Schimz K. L., Mechler B., Müller M..( 1999;). In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Mol Biol Cell10:2163–2173 [CrossRef][PubMed]
    [Google Scholar]
  32. Kundig W., Roseman S..( 1971;). Sugar transport. II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system. J Biol Chem246:1407–1418[PubMed]
    [Google Scholar]
  33. Lam V. H., Lee J. H., Silverio A., Chan H., Gomolplitinant K. M., Povolotsky T. L., Orlova E., Sun E. I., Welliver C. H., Saier M. H. Jr.( 2011;). Pathways of transport protein evolution: recent advances. Biol Chem392:5–12 [CrossRef][PubMed]
    [Google Scholar]
  34. Lengeler J. W., Jahreis K..( 2009;). Bacterial PEP-dependent carbohydrate: phosphotransferase systems couple sensing and global control mechanisms. Contrib Microbiol16:65–87 [CrossRef][PubMed]
    [Google Scholar]
  35. Leonard J. E., Saier M. H. Jr.( 1983;). Mannitol-specific enzyme II of the bacterial phosphotransferase system. II. Reconstitution of vectorial transphosphorylation in phospholipid vesicles. J Biol Chem258:10757–10760[PubMed]
    [Google Scholar]
  36. Lorca G. L., Barabote R. D., Zlotopolski V., Tran C., Winnen B., Hvorup R. N., Stonestrom A. J., Nguyen E., Huang L. W. et al.( 2007;). Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses. Biochim Biophys Acta1768:1342–1366 [CrossRef][PubMed]
    [Google Scholar]
  37. Luirink J., von Heijne G., Houben E., de Gier J.-W..( 2005;). Biogenesis of inner membrane proteins in Escherichia coli. Annu Rev Microbiol59:329–355 [CrossRef][PubMed]
    [Google Scholar]
  38. Meadow N. D., Fox D. K., Roseman S..( 1990;). The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem59:497–542 [CrossRef][PubMed]
    [Google Scholar]
  39. Meijberg W., Schuurman-Wolters G. K., Boer H., Scheek R. M., Robillard G. T..( 1998;). The thermal stability and domain interactions of the mannitol permease of Escherichia coli. A differential scanning calorimetry study. J Biol Chem273:20785–20794 [CrossRef][PubMed]
    [Google Scholar]
  40. Milner L. S., Kaback H. R..( 1970;). The role of phosphatidylglycerol in the vectorial phosphorylation of sugar by isolated bacterial membrane preparations. Proc Natl Acad Sci U S A65:683–690 [CrossRef][PubMed]
    [Google Scholar]
  41. Mohammadi T., van Dam V., Sijbrandi R., Vernet T., Zapun A., Bouhss A., Diepeveen-de Bruin M., Nguyen-Distèche M., de Kruijff B., Breukink E..( 2011;). Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J30:1425–1432 [CrossRef][PubMed]
    [Google Scholar]
  42. Mukhija S., Erni B..( 1996;). Purification by Ni2+ affinity chromatography, and functional reconstitution of the transporter for N-acetylglucosamine of Escherichia coli. J Biol Chem271:14819–14824 [CrossRef][PubMed]
    [Google Scholar]
  43. Nannenga B. L., Baneyx F..( 2011;). Enhanced expression of membrane proteins in E. coli with a P(BAD) promoter mutant: synergies with chaperone pathway engineering strategies. Microb Cell Fact10:105 [CrossRef][PubMed]
    [Google Scholar]
  44. Natale P., Brüser T., Driessen A. J..( 2008;). Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane–distinct translocases and mechanisms. Biochim Biophys Acta1778:1735–1756 [CrossRef][PubMed]
    [Google Scholar]
  45. Neumann-Haefelin C., Schäfer U., Müller M., Koch H. G..( 2000;). SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J19:6419–6426 [CrossRef][PubMed]
    [Google Scholar]
  46. Nishiyama K., Ikegami A., Moser M., Schiltz E., Tokuda H., Müller M..( 2006;). A derivative of lipid A is involved in signal recognition particle/SecYEG-dependent and -independent membrane integrations. J Biol Chem281:35667–35676 [CrossRef][PubMed]
    [Google Scholar]
  47. Paulsen I. T., Nguyen L., Sliwinski M. K., Rabus R., Saier M. H. Jr.( 2000;). Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol301:75–100 [CrossRef][PubMed]
    [Google Scholar]
  48. Pflüger-Grau K., Görke B..( 2010;). Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol18:205–214 [CrossRef][PubMed]
    [Google Scholar]
  49. Pop O. I., Soprova Z., Koningstein G., Scheffers D. J., van Ulsen P., Wickström D., de Gier J. W., Luirink J..( 2009;). YidC is required for the assembly of the MscL homopentameric pore. FEBS J276:4891–4899 [CrossRef][PubMed]
    [Google Scholar]
  50. Postma P. W., Lengeler J. W., Jacobson G. R..( 1993;). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev57:543–594[PubMed]
    [Google Scholar]
  51. Raine A., Ullers R., Pavlov M., Luirink J., Wikberg J. E., Ehrenberg M..( 2003;). Targeting and insertion of heterologous membrane proteins in E. coli. Biochimie85:659–668 [CrossRef][PubMed]
    [Google Scholar]
  52. Rephaeli A. W., Saier M. H. Jr.( 1978;). Kinetic analyses of the sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system. J Biol Chem253:7595–7597[PubMed]
    [Google Scholar]
  53. Rettner R. E., Saier M. H. Jr.( 2010;). The autoinducer-2 exporter superfamily. J Mol Microbiol Biotechnol18:195–205 [CrossRef][PubMed]
    [Google Scholar]
  54. Robillard G. T., Blaauw M..( 1987;). Enzyme II of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: protein-protein and protein-phospholipid interactions. Biochemistry26:5796–5803 [CrossRef][PubMed]
    [Google Scholar]
  55. Roepe P. D., Kaback H. R..( 1989;). Characterization and functional reconstitution of a soluble form of the hydrophobic membrane protein lac permease from Escherichia coli. Proc Natl Acad Sci U S A86:6087–6091 [CrossRef][PubMed]
    [Google Scholar]
  56. Roepe P. D., Kaback H. R..( 1990;). Isolation and functional reconstitution of soluble melibiose permease from Escherichia coli. Biochemistry29:2572–2577 [CrossRef][PubMed]
    [Google Scholar]
  57. Saier M. H. Jr.( 1989;). Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev53:109–120[PubMed]
    [Google Scholar]
  58. Saier M. H. Jr, Newman M. J..( 1976;). Direct transfer of the phosphoryl moiety of mannitol 1-phosphate to [14C]mannitol catalyzed by the enzyme II complexes of the phosphoenolpyruvate: mannitol phosphotransferase systems in Spirochaeta aurantia and Salmonella typhimurium. J Biol Chem251:3834–3837[PubMed]
    [Google Scholar]
  59. Saier M. H. Jr, Schmidt M. R..( 1981;). Vectorial and nonvectorial transphosphorylation catalyzed by enzymes II of the bacterial phosphotransferase system. J Bacteriol145:391–397[PubMed]
    [Google Scholar]
  60. Saier M. H. Jr, Feucht B. U., Roseman S..( 1971;). Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria. J Biol Chem246:7819–7821[PubMed]
    [Google Scholar]
  61. Saier M. H. Jr, Bromberg F. G., Roseman S..( 1973;). Characterization of constitutive galactose permease mutants in Salmonella typhimurium. J Bacteriol113:512–514[PubMed]
    [Google Scholar]
  62. Saier M. H. Jr, Cox D. F., Moczydlowski E. G..( 1977a;). Sugar phosphate:sugar transphosphorylation coupled to exchange group translocation catalyzed by the enzyme II complexes of the phosphoenolpyruvate:sugar phosphotransferase system in membrane vesicles of Escherichia coli. J Biol Chem252:8908–8916[PubMed]
    [Google Scholar]
  63. Saier M. H. Jr, Feucht B. U., Mora W. K..( 1977b;). Sugar phosphate: sugar transphosphorylation and exchange group translocation catalyzed by the enzyme 11 complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem252:8899–8907[PubMed]
    [Google Scholar]
  64. Saier M. H. Jr, Chauvaux S., Cook G. M., Deutscher J., Paulsen I. T., Reizer J., Ye J. J..( 1996;). Catabolite repression and inducer control in Gram-positive bacteria. Microbiology142:217–230 [CrossRef][PubMed]
    [Google Scholar]
  65. Saier M. H., Hvorup R. N., Barabote R. D..( 2005;). Evolution of the bacterial phosphotransferase system: from carriers and enzymes to group translocators. Biochem Soc Trans33:220–224 [CrossRef][PubMed]
    [Google Scholar]
  66. Simoni R. D., Levinthal M., Kundig F. D., Kundig W., Anderson B., Hartman P. E., Roseman S..( 1967;). Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport. Proc Natl Acad Sci U S A58:1963–1970 [CrossRef][PubMed]
    [Google Scholar]
  67. Slavic K., Krishna S., Derbyshire E. T., Staines H. M..( 2011;). Plasmodial sugar transporters as anti-malarial drug targets and comparisons with other protozoa. Malar J10:165 [CrossRef][PubMed]
    [Google Scholar]
  68. Stephan M. M., Jacobson G. R..( 1986;). Subunit interactions of the Escherichia coli mannitol permease: correlation with enzymic activities. Biochemistry25:4046–4051 [CrossRef][PubMed]
    [Google Scholar]
  69. Tchieu J. H., Norris V., Edwards J. S., Saier M. H. Jr.( 2001;). The complete phosphotransferase system in Escherichia coli. J Mol Microbiol Biotechnol3:329–346[PubMed]
    [Google Scholar]
  70. Tyhach R. J., Hawrot E., Satre M., Kennedy E. P..( 1979;). Increased synthesis of phosphatidylserine decarboxylase in a strain of Escherichia coli bearing a hybrid plasmid. Altered association of enzyme with the membrane. J Biol Chem254:627–633[PubMed]
    [Google Scholar]
  71. van Bloois E., ten Hagen-Jongman C. M., Luirink J..( 2007;). Flexibility in targeting and insertion during bacterial membrane protein biogenesis. Biochem Biophys Res Commun362:727–733 [CrossRef][PubMed]
    [Google Scholar]
  72. van der Does C., Manting E. H., Kaufmann A., Lutz M., Driessen A. J..( 1998;). Interaction between SecA and SecYEG in micellar solution and formation of the membrane-inserted state. Biochemistry37:201–210 [CrossRef][PubMed]
    [Google Scholar]
  73. van Montfort B. A., Schuurman-Wolters G. K., Duurkens R. H., Mensen R., Poolman B., Robillard G. T..( 2001;). Cysteine cross-linking defines part of the dimer and B/C domain interface of the Escherichia coli mannitol permease. J Biol Chem276:12756–12763 [CrossRef][PubMed]
    [Google Scholar]
  74. van Montfort B. A., Schuurman-Wolters G. K., Wind J., Broos J., Robillard G. T., Poolman B..( 2002;). Mapping of the dimer interface of the Escherichia coli mannitol permease by cysteine cross-linking. J Biol Chem277:14717–14723 [CrossRef][PubMed]
    [Google Scholar]
  75. Wagner S., Pop O. I., Haan G. J., Baars L., Koningstein G., Klepsch M. M., Genevaux P., Luirink J., de Gier J. W..( 2008;). Biogenesis of MalF and the MalFGK(2) maltose transport complex in Escherichia coli requires YidC. J Biol Chem283:17881–17890 [CrossRef][PubMed]
    [Google Scholar]
  76. Welte T., Kudva R., Kuhn P., Sturm L., Braig D., Müller M., Warscheid B., Drepper F., Koch H. G..( 2012;). Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol Biol Cell23:464–479 [CrossRef][PubMed]
    [Google Scholar]
  77. Werner P. K., Saier M. H. Jr, Müller M..( 1992;). Membrane insertion of the mannitol permease of Escherichia coli occurs under conditions of impaired SecA function. J Biol Chem267:24523–24532[PubMed]
    [Google Scholar]
  78. Yamada Y., Chang Y. Y., Daniels G. A., Wu L. F., Tomich J. M., Yamada M., Saier M. H. Jr.( 1991;). Insertion of the mannitol permease into the membrane of Escherichia coli. Possible involvement of an N-terminal amphiphilic sequence. J Biol Chem266:17863–17871[PubMed]
    [Google Scholar]
  79. Yen M. R., Chen J. S., Marquez J. L., Sun E. I., Saier M. H..( 2010;). Multidrug resistance: phylogenetic characterization of superfamilies of secondary carriers that include drug exporters. Methods Mol Biol637:47–64 [CrossRef][PubMed]
    [Google Scholar]
  80. Yi L., Celebi N., Chen M., Dalbey R. E..( 2004;). Sec/SRP requirements and energetics of membrane insertion of subunits a, b, and c of the Escherichia coli F1F0 ATP synthase. J Biol Chem279:39260–39267 [CrossRef][PubMed]
    [Google Scholar]
  81. Zen K. H., Consler T. G., Kaback H. R..( 1995;). Insertion of the polytopic membrane protein lactose permease occurs by multiple mechanisms. Biochemistry34:3430–3437 [CrossRef][PubMed]
    [Google Scholar]
  82. Zhang Y. M., Rock C. O..( 2008;). Thematic review series: Glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis. J Lipid Res49:1867–1874 [CrossRef][PubMed]
    [Google Scholar]
  83. Zhang Z., Feige J. N., Chang A. B., Anderson I. J., Brodianski V. M., Vitreschak A. G., Gelfand M. S., Saier M. H. Jr.( 2003;). A transporter of Escherichia coli specific for l- and d-methionine is the prototype for a new family within the ABC superfamily. Arch Microbiol180:88–100 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070953-0
Loading
/content/journal/micro/10.1099/mic.0.070953-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error