1887

Abstract

Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells , and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. , a putative SLAP gene, was deleted from the chromosome of . Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070755-0
2013-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2269.html?itemId=/content/journal/micro/10.1099/mic.0.070755-0&mimeType=html&fmt=ahah

References

  1. Altermann E., Buck L. B., Cano R., Klaenhammer T. R.( 2004). Identification and phenotypic characterization of the cell-division protein CdpA. Gene 342:189–197 [View Article][PubMed]
    [Google Scholar]
  2. Altermann E., Russell W. M., Azcarate-Peril M. A., Barrangou R., Buck B. L., McAuliffe O., Souther N., Dobson A., Duong T. et al.( 2005). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102:3906–3912 [View Article][PubMed]
    [Google Scholar]
  3. Ashida N., Yanagihara S., Shinoda T., Yamamoto N.( 2011). Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis. J Biosci Bioeng 112:333–337 [View Article][PubMed]
    [Google Scholar]
  4. Åvall-Jääskeläinen S., Palva A.( 2005). Lactobacillus surface layers and their applications. FEMS Microbiol Rev 29:511–529 [View Article][PubMed]
    [Google Scholar]
  5. Azcarate-Peril M. A., Altermann E., Hoover-Fitzula R. L., Cano R. J., Klaenhammer T. R.( 2004). Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Appl Environ Microbiol 70:5315–5322 [View Article][PubMed]
    [Google Scholar]
  6. Barrangou R., Altermann E., Hutkins R., Cano R., Klaenhammer T. R.( 2003). Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci U S A 100:8957–8962 [View Article][PubMed]
    [Google Scholar]
  7. Beganović J., Frece J., Kos B., Leboš Pavunc A., Habjanič K., Sušković J.( 2011). Functionality of the S-layer protein from the probiotic strain Lactobacillus helveticus M92. Antonie van Leeuwenhoek 100:43–53 [View Article][PubMed]
    [Google Scholar]
  8. Blaser M. J., Smith P. F., Repine J. E., Joiner K. A.( 1988). Pathogenesis of Campylobacter fetus infections. Failure of encapsulated Campylobacter fetus to bind C3b explains serum and phagocytosis resistance. J Clin Invest 81:1434–1444 [View Article][PubMed]
    [Google Scholar]
  9. Boot H. J., Pouwels P. H.( 1996). Expression, secretion and antigenic variation of bacterial S-layer proteins. Mol Microbiol 21:1117–1123 [View Article][PubMed]
    [Google Scholar]
  10. Boot H. J., Kolen C. P., Pouwels P. H.( 1995). Identification, cloning, and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species. J Bacteriol 177:7222–7230[PubMed]
    [Google Scholar]
  11. Boot H. J., Kolen C. P., Pot B., Kersters K., Pouwels P. H.( 1996). The presence of two S-layer-protein-encoding genes is conserved among species related to Lactobacillus acidophilus. Microbiology 142:2375–2384 [View Article][PubMed]
    [Google Scholar]
  12. Brechtel E., Bahl H.( 1999). In Thermoanaerobacterium thermosulfurigenes EM1 S-layer homology domains do not attach to peptidoglycan. J Bacteriol 181:5017–5023[PubMed]
    [Google Scholar]
  13. Buck B. L., Altermann E., Svingerud T., Klaenhammer T. R.( 2005). Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:8344–8351 [View Article][PubMed]
    [Google Scholar]
  14. Calabi E., Calabi F., Phillips A. D., Fairweather N. F.( 2002). Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect Immun 70:5770–5778 [View Article][PubMed]
    [Google Scholar]
  15. Chauvaux S., Matuschek M., Beguin P.( 1999). Distinct affinity of binding sites for S-layer homologous domains in Clostridium thermocellum and Bacillus anthracis cell envelopes. J Bacteriol 181:2455–2458[PubMed]
    [Google Scholar]
  16. Dobson A. E., Sanozky-Dawes R. B., Klaenhammer T. R.( 2007). Identification of an operon and inducing peptide involved in the production of lactacin B by Lactobacillus acidophilus. J Appl Microbiol 103:1766–1778 [View Article][PubMed]
    [Google Scholar]
  17. Dreisbach A., van Dijl J. M., Buist G.( 2011). The cell surface proteome of Staphylococcus aureus. Proteomics 11:3154–3168 [View Article][PubMed]
    [Google Scholar]
  18. Driessen A. J. M., Nouwen N.( 2008). Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667 [View Article][PubMed]
    [Google Scholar]
  19. Frece J., Kos B., Svetec I. K., Zgaga Z., Mrsa V., Susković J.( 2005). Importance of S-layer proteins in probiotic activity of Lactobacillus acidophilus M92. J Appl Microbiol 98:285–292 [View Article][PubMed]
    [Google Scholar]
  20. Goh Y. J., Klaenhammer T. R.( 2010). Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 76:5005–5012 [View Article][PubMed]
    [Google Scholar]
  21. Goh Y. J., Azcárate-Peril M. A., O’Flaherty S., Durmaz E., Valence F., Jardin J., Lortal S., Klaenhammer T. R.( 2009). Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 75:3093–3105 [View Article][PubMed]
    [Google Scholar]
  22. Hammes W. P., Vogel R. F.( 1995). The genus Lactobacillus. The Genera of Lactic Acid Bacteria19–54 Wood B. J. B., Holzapfel W. H. Glasgow: Blackie Academic & Professional; [View Article]
    [Google Scholar]
  23. Hanahan D.( 1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [View Article][PubMed]
    [Google Scholar]
  24. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R.( 1989). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68 [View Article][PubMed]
    [Google Scholar]
  25. Hynönen U., Palva A.( 2013). Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol 97:5225–5243 [View Article][PubMed]
    [Google Scholar]
  26. Jeffery C. J.( 1999). Moonlighting proteins. Trends Biochem Sci 24:8–11 [View Article][PubMed]
    [Google Scholar]
  27. Katakura Y., Sano R., Hashimoto T., Ninomiya K., Shioya S.( 2010). Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannan. Appl Microbiol Biotechnol 86:319–326 [View Article][PubMed]
    [Google Scholar]
  28. Kay W. W., Phipps B. M., Ishiguro E. E., Olafson R. W., Trust T. J.( 1984). Surface layer virulence A-proteins from Aeromonas salmonicida strains. Can J Biochem Cell Biol 62:1064–1071 [View Article][PubMed]
    [Google Scholar]
  29. Kern J. W., Schneewind O.( 2008). BslA, a pXO1-encoded adhesin of Bacillus anthracis. Mol Microbiol 68:504–515 [View Article][PubMed]
    [Google Scholar]
  30. Kern J., Schneewind O.( 2010). BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis. Mol Microbiol 75:324–332 [View Article][PubMed]
    [Google Scholar]
  31. Kern V. J., Kern J. W., Theriot J. A., Schneewind O., Missiakas D.( 2012). Surface-layer (S-layer) proteins sap and EA1 govern the binding of the S-layer-associated protein BslO at the cell septa of Bacillus anthracis. J Bacteriol 194:3833–3840 [View Article][PubMed]
    [Google Scholar]
  32. Kingsford C. L., Ayanbule K., Salzberg S. L.( 2007). Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8:R22 [View Article][PubMed]
    [Google Scholar]
  33. Kinoshita H., Uchida H., Kawai Y., Kawasaki T., Wakahara N., Matsuo H., Watanabe M., Kitazawa H., Ohnuma S. et al.( 2008). Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol 104:1667–1674 [View Article][PubMed]
    [Google Scholar]
  34. Konstantinov S. R., Smidt H., de Vos W. M., Bruijns S. C., Singh S. K., Valence F., Molle D., Lortal S., Altermann E. et al.( 2008). S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A 105:19474–19479 [View Article][PubMed]
    [Google Scholar]
  35. Lortal S., Vanheijenoort J., Gruber K., Sleytr U. B.( 1992). S-layer of Lactobacillus helveticus ATCC 12046: isolation, chemical characterization and re-formation after extraction with lithium chloride. J Gen Microbiol 138:611–618 [View Article]
    [Google Scholar]
  36. Lunderberg J. M., Nguyen-Mau S. M., Richter G. S., Wang Y. T., Dworkin J., Missiakas D. M., Schneewind O.( 2013). Bacillus anthracis acetyltransferases PatA1 and PatA2 modify the secondary cell wall polysaccharide and affect the assembly of S-layer proteins. J Bacteriol 195:977–989 [View Article][PubMed]
    [Google Scholar]
  37. MacDonald T. T., Monteleone G.( 2005). Immunity, inflammation, and allergy in the gut. Science 307:1920–1925 [View Article][PubMed]
    [Google Scholar]
  38. Mohamadzadeh M., Pfeiler E. A., Brown J. B., Zadeh M., Gramarossa M., Managlia E., Bere P., Sarraj B., Khan M. W. et al.( 2011). Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A 108:Suppl. 14623–4630 [View Article][PubMed]
    [Google Scholar]
  39. Petersen T. N., Brunak S., von Heijne G., Nielsen H.( 2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786 [View Article][PubMed]
    [Google Scholar]
  40. Pfeiler E. A., Azcarate-Peril M. A., Klaenhammer T. R.( 2007). Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol 189:4624–4634 [View Article][PubMed]
    [Google Scholar]
  41. Pot B., Ludwig W., Kersters K., Schleifer K. H.( 1994). Taxonomy of lactic acid bacteria. Bacteriocins of Lactic Acid Bacteria13–90 de Vuyst L., Vandamme E. J. Glasgow: Chapman & Hall; [View Article]
    [Google Scholar]
  42. Russell W. M., Klaenhammer T. R.( 2001). Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Appl Environ Microb 67:4361–4364 [View Article][PubMed]
    [Google Scholar]
  43. Sánchez B., Schmitter J. M., Urdaci M. C.( 2009). Identification of novel proteins secreted by Lactobacillus plantarum that bind to mucin and fibronectin. J Mol Microbiol Biotechnol 17:158–162 [View Article][PubMed]
    [Google Scholar]
  44. Sanders M. E., Klaenhammer T. R.( 2001). Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 84:319–331 [View Article][PubMed]
    [Google Scholar]
  45. Sára M., Sleytr U. B.( 1996). Crystalline bacterial cell surface layers (S-layers): from cell structure to biomimetics. Prog Biophys Mol Biol 65:83–111 [View Article][PubMed]
    [Google Scholar]
  46. Sára M., Sleytr U. B.( 2000). S-Layer proteins. J Bacteriol 182:859–868 [View Article][PubMed]
    [Google Scholar]
  47. Shevchenko A., Wilm M., Vorm O., Mann M.( 1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858 [View Article][PubMed]
    [Google Scholar]
  48. Sleytr U. B., Beveridge T. J.( 1999). Bacterial S-layers. Trends Microbiol 7:253–260 [View Article][PubMed]
    [Google Scholar]
  49. Sleytr U. B., Messner P.( 1983). Crystalline surface layers on bacteria. Annu Rev Microbiol 37:311–339 [View Article][PubMed]
    [Google Scholar]
  50. Sleytr U. B., Sára M.( 1997). Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotechnol 15:20–26 [View Article][PubMed]
    [Google Scholar]
  51. Sleytr U. B., Sára M., Pum D., Schuster B.( 2001). Characterization and use of crystalline bacterial cell surface layers. Prog Surf Sci 68:231–278 [View Article]
    [Google Scholar]
  52. Smit E., Oling F., Demel R., Martinez B., Pouwels P. H.( 2001). The S-layer protein of Lactobacillus acidophilus ATCC 4356: identification and characterisation of domains responsible for S-protein assembly and cell wall binding. J Mol Biol 305:245–257 [View Article][PubMed]
    [Google Scholar]
  53. Stoeker L., Nordone S., Gunderson S., Zhang L., Kajikawa A., LaVoy A., Miller M., Klaenhammer T. R., Dean G. A.( 2011). Assessment of Lactobacillus gasseri as a candidate oral vaccine vector. Clin Vaccine Immunol 18:1834–1844 [View Article][PubMed]
    [Google Scholar]
  54. Sutcliffe I. C., Harrington D. J.( 2002). Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology 148:2065–2077[PubMed]
    [Google Scholar]
  55. Tabb D. L., Ma Z. Q., Martin D. B., Ham A. J. L., Chambers M. C.( 2008). DirecTag: accurate sequence tags from peptide MS/MS through statistical scoring. J Proteome Res 7:3838–3846 [View Article][PubMed]
    [Google Scholar]
  56. Taverniti V., Stuknyte M., Minuzzo M., Arioli S., De Noni I., Scabiosi C., Cordova Z. M., Junttila I., Hämäläinen S. et al.( 2013). S-layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity. Appl Environ Microbiol 79:1221–1231 [View Article][PubMed]
    [Google Scholar]
  57. Tjalsma H., van Dijl J. M.( 2005). Proteomics-based consensus prediction of protein retention in a bacterial membrane. Proteomics 5:4472–4482 [View Article][PubMed]
    [Google Scholar]
  58. van Roosmalen M. L., Geukens N., Jongbloed J. D. H., Tjalsma H., Dubois J. Y. F., Bron S., van Dijl J. M., Anné J.( 2004). Type I signal peptidases of Gram-positive bacteria. Biochim Biophys Acta 1694:279–297 [View Article][PubMed]
    [Google Scholar]
  59. Walker D. C., Aoyama K., Klaenhammer T. R.( 1996). Electrotransformation of Lactobacillus acidophilus group A1. FEMS Microbiol Lett 138:233–237 [View Article][PubMed]
    [Google Scholar]
  60. Walker D. H., Valbuena G. A., Olano J. P.( 2003). Pathogenic mechanisms of diseases caused by Rickettsia. Ann N Y Acad Sci 990:1–11 [View Article][PubMed]
    [Google Scholar]
  61. Wei M. Q., Rush C. M., Norman J. M., Hafner L. M., Epping R. J., Timms P.( 1995). An improved method for the transformation of Lactobacillus strains using electroporation. J Microbiol Methods 21:97–109 [View Article]
    [Google Scholar]
  62. Zhou M., Boekhorst J., Francke C., Siezen R. J.( 2008). LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics 9:173 [View Article][PubMed]
    [Google Scholar]
  63. Zhou M., Theunissen D., Wels M., Siezen R. J.( 2010). LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of lactic acid bacteria. BMC Genomics 11:651 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070755-0
Loading
/content/journal/micro/10.1099/mic.0.070755-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error