1887

Abstract

Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells , and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. , a putative SLAP gene, was deleted from the chromosome of . Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070755-0
2013-11-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2269.html?itemId=/content/journal/micro/10.1099/mic.0.070755-0&mimeType=html&fmt=ahah

References

  1. Altermann E., Buck L. B., Cano R., Klaenhammer T. R.. ( 2004;). Identification and phenotypic characterization of the cell-division protein CdpA. . Gene 342:, 189–197. [CrossRef][PubMed]
    [Google Scholar]
  2. Altermann E., Russell W. M., Azcarate-Peril M. A., Barrangou R., Buck B. L., McAuliffe O., Souther N., Dobson A., Duong T. et al. ( 2005;). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. . Proc Natl Acad Sci U S A 102:, 3906–3912. [CrossRef][PubMed]
    [Google Scholar]
  3. Ashida N., Yanagihara S., Shinoda T., Yamamoto N.. ( 2011;). Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis. . J Biosci Bioeng 112:, 333–337. [CrossRef][PubMed]
    [Google Scholar]
  4. Åvall-Jääskeläinen S., Palva A.. ( 2005;). Lactobacillus surface layers and their applications. . FEMS Microbiol Rev 29:, 511–529. [CrossRef][PubMed]
    [Google Scholar]
  5. Azcarate-Peril M. A., Altermann E., Hoover-Fitzula R. L., Cano R. J., Klaenhammer T. R.. ( 2004;). Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. . Appl Environ Microbiol 70:, 5315–5322. [CrossRef][PubMed]
    [Google Scholar]
  6. Barrangou R., Altermann E., Hutkins R., Cano R., Klaenhammer T. R.. ( 2003;). Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. . Proc Natl Acad Sci U S A 100:, 8957–8962. [CrossRef][PubMed]
    [Google Scholar]
  7. Beganović J., Frece J., Kos B., Leboš Pavunc A., Habjanič K., Sušković J.. ( 2011;). Functionality of the S-layer protein from the probiotic strain Lactobacillus helveticus M92. . Antonie van Leeuwenhoek 100:, 43–53. [CrossRef][PubMed]
    [Google Scholar]
  8. Blaser M. J., Smith P. F., Repine J. E., Joiner K. A.. ( 1988;). Pathogenesis of Campylobacter fetus infections. Failure of encapsulated Campylobacter fetus to bind C3b explains serum and phagocytosis resistance. . J Clin Invest 81:, 1434–1444. [CrossRef][PubMed]
    [Google Scholar]
  9. Boot H. J., Pouwels P. H.. ( 1996;). Expression, secretion and antigenic variation of bacterial S-layer proteins. . Mol Microbiol 21:, 1117–1123. [CrossRef][PubMed]
    [Google Scholar]
  10. Boot H. J., Kolen C. P., Pouwels P. H.. ( 1995;). Identification, cloning, and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species. . J Bacteriol 177:, 7222–7230.[PubMed]
    [Google Scholar]
  11. Boot H. J., Kolen C. P., Pot B., Kersters K., Pouwels P. H.. ( 1996;). The presence of two S-layer-protein-encoding genes is conserved among species related to Lactobacillus acidophilus. . Microbiology 142:, 2375–2384. [CrossRef][PubMed]
    [Google Scholar]
  12. Brechtel E., Bahl H.. ( 1999;). In Thermoanaerobacterium thermosulfurigenes EM1 S-layer homology domains do not attach to peptidoglycan. . J Bacteriol 181:, 5017–5023.[PubMed]
    [Google Scholar]
  13. Buck B. L., Altermann E., Svingerud T., Klaenhammer T. R.. ( 2005;). Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. . Appl Environ Microbiol 71:, 8344–8351. [CrossRef][PubMed]
    [Google Scholar]
  14. Calabi E., Calabi F., Phillips A. D., Fairweather N. F.. ( 2002;). Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. . Infect Immun 70:, 5770–5778. [CrossRef][PubMed]
    [Google Scholar]
  15. Chauvaux S., Matuschek M., Beguin P.. ( 1999;). Distinct affinity of binding sites for S-layer homologous domains in Clostridium thermocellum and Bacillus anthracis cell envelopes. . J Bacteriol 181:, 2455–2458.[PubMed]
    [Google Scholar]
  16. Dobson A. E., Sanozky-Dawes R. B., Klaenhammer T. R.. ( 2007;). Identification of an operon and inducing peptide involved in the production of lactacin B by Lactobacillus acidophilus. . J Appl Microbiol 103:, 1766–1778. [CrossRef][PubMed]
    [Google Scholar]
  17. Dreisbach A., van Dijl J. M., Buist G.. ( 2011;). The cell surface proteome of Staphylococcus aureus. . Proteomics 11:, 3154–3168. [CrossRef][PubMed]
    [Google Scholar]
  18. Driessen A. J. M., Nouwen N.. ( 2008;). Protein translocation across the bacterial cytoplasmic membrane. . Annu Rev Biochem 77:, 643–667. [CrossRef][PubMed]
    [Google Scholar]
  19. Frece J., Kos B., Svetec I. K., Zgaga Z., Mrsa V., Susković J.. ( 2005;). Importance of S-layer proteins in probiotic activity of Lactobacillus acidophilus M92. . J Appl Microbiol 98:, 285–292. [CrossRef][PubMed]
    [Google Scholar]
  20. Goh Y. J., Klaenhammer T. R.. ( 2010;). Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM. . Appl Environ Microbiol 76:, 5005–5012. [CrossRef][PubMed]
    [Google Scholar]
  21. Goh Y. J., Azcárate-Peril M. A., O’Flaherty S., Durmaz E., Valence F., Jardin J., Lortal S., Klaenhammer T. R.. ( 2009;). Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. . Appl Environ Microbiol 75:, 3093–3105. [CrossRef][PubMed]
    [Google Scholar]
  22. Hammes W. P., Vogel R. F.. ( 1995;). The genus Lactobacillus. . In The Genera of Lactic Acid Bacteria, pp. 19–54. Edited by Wood B. J. B., Holzapfel W. H... Glasgow:: Blackie Academic & Professional;. [CrossRef]
    [Google Scholar]
  23. Hanahan D.. ( 1983;). Studies on transformation of Escherichia coli with plasmids. . J Mol Biol 166:, 557–580. [CrossRef][PubMed]
    [Google Scholar]
  24. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R.. ( 1989;). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. . Gene 77:, 61–68. [CrossRef][PubMed]
    [Google Scholar]
  25. Hynönen U., Palva A.. ( 2013;). Lactobacillus surface layer proteins: structure, function and applications. . Appl Microbiol Biotechnol 97:, 5225–5243. [CrossRef][PubMed]
    [Google Scholar]
  26. Jeffery C. J.. ( 1999;). Moonlighting proteins. . Trends Biochem Sci 24:, 8–11. [CrossRef][PubMed]
    [Google Scholar]
  27. Katakura Y., Sano R., Hashimoto T., Ninomiya K., Shioya S.. ( 2010;). Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannan. . Appl Microbiol Biotechnol 86:, 319–326. [CrossRef][PubMed]
    [Google Scholar]
  28. Kay W. W., Phipps B. M., Ishiguro E. E., Olafson R. W., Trust T. J.. ( 1984;). Surface layer virulence A-proteins from Aeromonas salmonicida strains. . Can J Biochem Cell Biol 62:, 1064–1071. [CrossRef][PubMed]
    [Google Scholar]
  29. Kern J. W., Schneewind O.. ( 2008;). BslA, a pXO1-encoded adhesin of Bacillus anthracis. . Mol Microbiol 68:, 504–515. [CrossRef][PubMed]
    [Google Scholar]
  30. Kern J., Schneewind O.. ( 2010;). BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis. . Mol Microbiol 75:, 324–332. [CrossRef][PubMed]
    [Google Scholar]
  31. Kern V. J., Kern J. W., Theriot J. A., Schneewind O., Missiakas D.. ( 2012;). Surface-layer (S-layer) proteins sap and EA1 govern the binding of the S-layer-associated protein BslO at the cell septa of Bacillus anthracis. . J Bacteriol 194:, 3833–3840. [CrossRef][PubMed]
    [Google Scholar]
  32. Kingsford C. L., Ayanbule K., Salzberg S. L.. ( 2007;). Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. . Genome Biol 8:, R22. [CrossRef][PubMed]
    [Google Scholar]
  33. Kinoshita H., Uchida H., Kawai Y., Kawasaki T., Wakahara N., Matsuo H., Watanabe M., Kitazawa H., Ohnuma S. et al. ( 2008;). Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. . J Appl Microbiol 104:, 1667–1674. [CrossRef][PubMed]
    [Google Scholar]
  34. Konstantinov S. R., Smidt H., de Vos W. M., Bruijns S. C., Singh S. K., Valence F., Molle D., Lortal S., Altermann E. et al. ( 2008;). S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. . Proc Natl Acad Sci U S A 105:, 19474–19479. [CrossRef][PubMed]
    [Google Scholar]
  35. Lortal S., Vanheijenoort J., Gruber K., Sleytr U. B.. ( 1992;). S-layer of Lactobacillus helveticus ATCC 12046: isolation, chemical characterization and re-formation after extraction with lithium chloride. . J Gen Microbiol 138:, 611–618. [CrossRef]
    [Google Scholar]
  36. Lunderberg J. M., Nguyen-Mau S. M., Richter G. S., Wang Y. T., Dworkin J., Missiakas D. M., Schneewind O.. ( 2013;). Bacillus anthracis acetyltransferases PatA1 and PatA2 modify the secondary cell wall polysaccharide and affect the assembly of S-layer proteins. . J Bacteriol 195:, 977–989. [CrossRef][PubMed]
    [Google Scholar]
  37. MacDonald T. T., Monteleone G.. ( 2005;). Immunity, inflammation, and allergy in the gut. . Science 307:, 1920–1925. [CrossRef][PubMed]
    [Google Scholar]
  38. Mohamadzadeh M., Pfeiler E. A., Brown J. B., Zadeh M., Gramarossa M., Managlia E., Bere P., Sarraj B., Khan M. W. et al. ( 2011;). Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. . Proc Natl Acad Sci U S A 108: (Suppl. 1), 4623–4630. [CrossRef][PubMed]
    [Google Scholar]
  39. Petersen T. N., Brunak S., von Heijne G., Nielsen H.. ( 2011;). SignalP 4.0: discriminating signal peptides from transmembrane regions. . Nat Methods 8:, 785–786. [CrossRef][PubMed]
    [Google Scholar]
  40. Pfeiler E. A., Azcarate-Peril M. A., Klaenhammer T. R.. ( 2007;). Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. . J Bacteriol 189:, 4624–4634. [CrossRef][PubMed]
    [Google Scholar]
  41. Pot B., Ludwig W., Kersters K., Schleifer K. H.. ( 1994;). Taxonomy of lactic acid bacteria. . In Bacteriocins of Lactic Acid Bacteria, pp. 13–90. Edited by de Vuyst L., Vandamme E. J... Glasgow:: Chapman & Hall;. [CrossRef]
    [Google Scholar]
  42. Russell W. M., Klaenhammer T. R.. ( 2001;). Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. . Appl Environ Microb, 67:, 4361–4364. [CrossRef][PubMed]
    [Google Scholar]
  43. Sánchez B., Schmitter J. M., Urdaci M. C.. ( 2009;). Identification of novel proteins secreted by Lactobacillus plantarum that bind to mucin and fibronectin. . J Mol Microbiol Biotechnol 17:, 158–162. [CrossRef][PubMed]
    [Google Scholar]
  44. Sanders M. E., Klaenhammer T. R.. ( 2001;). Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. . J Dairy Sci 84:, 319–331. [CrossRef][PubMed]
    [Google Scholar]
  45. Sára M., Sleytr U. B.. ( 1996;). Crystalline bacterial cell surface layers (S-layers): from cell structure to biomimetics. . Prog Biophys Mol Biol 65:, 83–111. [CrossRef][PubMed]
    [Google Scholar]
  46. Sára M., Sleytr U. B.. ( 2000;). S-Layer proteins. . J Bacteriol 182:, 859–868. [CrossRef][PubMed]
    [Google Scholar]
  47. Shevchenko A., Wilm M., Vorm O., Mann M.. ( 1996;). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. . Anal Chem 68:, 850–858. [CrossRef][PubMed]
    [Google Scholar]
  48. Sleytr U. B., Beveridge T. J.. ( 1999;). Bacterial S-layers. . Trends Microbiol 7:, 253–260. [CrossRef][PubMed]
    [Google Scholar]
  49. Sleytr U. B., Messner P.. ( 1983;). Crystalline surface layers on bacteria. . Annu Rev Microbiol 37:, 311–339. [CrossRef][PubMed]
    [Google Scholar]
  50. Sleytr U. B., Sára M.. ( 1997;). Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. . Trends Biotechnol 15:, 20–26. [CrossRef][PubMed]
    [Google Scholar]
  51. Sleytr U. B., Sára M., Pum D., Schuster B.. ( 2001;). Characterization and use of crystalline bacterial cell surface layers. . Prog Surf Sci 68:, 231–278. [CrossRef]
    [Google Scholar]
  52. Smit E., Oling F., Demel R., Martinez B., Pouwels P. H.. ( 2001;). The S-layer protein of Lactobacillus acidophilus ATCC 4356: identification and characterisation of domains responsible for S-protein assembly and cell wall binding. . J Mol Biol 305:, 245–257. [CrossRef][PubMed]
    [Google Scholar]
  53. Stoeker L., Nordone S., Gunderson S., Zhang L., Kajikawa A., LaVoy A., Miller M., Klaenhammer T. R., Dean G. A.. ( 2011;). Assessment of Lactobacillus gasseri as a candidate oral vaccine vector. . Clin Vaccine Immunol 18:, 1834–1844. [CrossRef][PubMed]
    [Google Scholar]
  54. Sutcliffe I. C., Harrington D. J.. ( 2002;). Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. . Microbiology 148:, 2065–2077.[PubMed]
    [Google Scholar]
  55. Tabb D. L., Ma Z. Q., Martin D. B., Ham A. J. L., Chambers M. C.. ( 2008;). DirecTag: accurate sequence tags from peptide MS/MS through statistical scoring. . J Proteome Res 7:, 3838–3846. [CrossRef][PubMed]
    [Google Scholar]
  56. Taverniti V., Stuknyte M., Minuzzo M., Arioli S., De Noni I., Scabiosi C., Cordova Z. M., Junttila I., Hämäläinen S. et al. ( 2013;). S-layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity. . Appl Environ Microbiol 79:, 1221–1231. [CrossRef][PubMed]
    [Google Scholar]
  57. Tjalsma H., van Dijl J. M.. ( 2005;). Proteomics-based consensus prediction of protein retention in a bacterial membrane. . Proteomics 5:, 4472–4482. [CrossRef][PubMed]
    [Google Scholar]
  58. van Roosmalen M. L., Geukens N., Jongbloed J. D. H., Tjalsma H., Dubois J. Y. F., Bron S., van Dijl J. M., Anné J.. ( 2004;). Type I signal peptidases of Gram-positive bacteria. . Biochim Biophys Acta 1694:, 279–297. [CrossRef][PubMed]
    [Google Scholar]
  59. Walker D. C., Aoyama K., Klaenhammer T. R.. ( 1996;). Electrotransformation of Lactobacillus acidophilus group A1. . FEMS Microbiol Lett 138:, 233–237. [CrossRef][PubMed]
    [Google Scholar]
  60. Walker D. H., Valbuena G. A., Olano J. P.. ( 2003;). Pathogenic mechanisms of diseases caused by Rickettsia. . Ann N Y Acad Sci 990:, 1–11. [CrossRef][PubMed]
    [Google Scholar]
  61. Wei M. Q., Rush C. M., Norman J. M., Hafner L. M., Epping R. J., Timms P.. ( 1995;). An improved method for the transformation of Lactobacillus strains using electroporation. . J Microbiol Methods 21:, 97–109. [CrossRef]
    [Google Scholar]
  62. Zhou M., Boekhorst J., Francke C., Siezen R. J.. ( 2008;). LocateP: genome-scale subcellular-location predictor for bacterial proteins. . BMC Bioinformatics 9:, 173. [CrossRef][PubMed]
    [Google Scholar]
  63. Zhou M., Theunissen D., Wels M., Siezen R. J.. ( 2010;). LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of lactic acid bacteria. . BMC Genomics 11:, 651. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070755-0
Loading
/content/journal/micro/10.1099/mic.0.070755-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error