1887

Abstract

Pyocins are toxic proteins produced by some strains of that are lethal for related strains of the same species. Some soluble pyocins (S2, S3 and S4) were previously shown to use the pyoverdine siderophore receptors to enter the cell. The PAO1 pore-forming pyocin S5 encoding gene (PAO985) was cloned into the expression vector pET15b, and the affinity-purified protein product tested for its killing activity against different strains. The results, however, did not show any correlation with a specific ferripyoverdine receptor. To further identify the S5 receptor, transposon mutants were generated. Pooled mutants were exposed to pyocin S5 and the resistant colonies growing in the killing zone were selected. The majority of S5-resistant mutants had an insertion in the gene encoding the receptor for the siderophore pyochelin. Complementation of an transposon mutant with the gene restored the sensitivity to S5. In order to define the receptor-binding domain of pyocin S5, two hybrid pyocins were constructed containing different regions from pyocin S5 fused to the C-terminal translocation and DNase killing domains of pyocin S2. Only the protein containing amino acid residues 151 to 300 from S5 showed toxicity, indicating that the pyocin S5 receptor-binding domain is not at the N-terminus of the protein as in other S-type pyocins. Pyocin S5 was, however, unable to kill strains producing a ferripyochelin FptA receptor, nor was the gene able to restore the sensitivity of the resistant mutant strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070672-0
2014-02-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/2/261.html?itemId=/content/journal/micro/10.1099/mic.0.070672-0&mimeType=html&fmt=ahah

References

  1. Baysse C., Meyer J. M., Plesiat P., Geoffroy V., Michel-Briand Y., Cornelis P.. ( 1999;). Uptake of pyocin S3 occurs through the outer membrane ferripyoverdine type II receptor of Pseudomonas aeruginosa.. J Bacteriol 181:, 3849–3851.[PubMed]
    [Google Scholar]
  2. Bodilis J., Ghysels B., Osayande J., Matthijs S., Pirnay J. P., Denayer S., De Vos D., Cornelis P.. ( 2009;). Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa.. Environ Microbiol 11:, 2123–2135. [CrossRef][PubMed]
    [Google Scholar]
  3. Cascales E., Buchanan S. K., Duché D., Kleanthous C., Lloubès R., Postle K., Riley M., Slatin S., Cavard D.. ( 2007;). Colicin biology. . Microbiol Mol Biol Rev 71:, 158–229. [CrossRef][PubMed]
    [Google Scholar]
  4. Chang W., Small D. A., Toghrol F., Bentley W. E.. ( 2005;). Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. . BMC Genomics 6:, 115. [CrossRef][PubMed]
    [Google Scholar]
  5. Cobessi D., Celia H., Pattus F.. ( 2005;). Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa.. J Mol Biol 352:, 893–904. [CrossRef][PubMed]
    [Google Scholar]
  6. de Chial M., Ghysels B., Beatson S. A., Geoffroy V., Meyer J. M., Pattery T., Baysse C., Chablain P., Parsons Y. N.. & other authors ( 2003;). Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa.. Microbiology 149:, 821–831. [CrossRef][PubMed]
    [Google Scholar]
  7. de Lorenzo V., Timmis K. N.. ( 1994;). Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. . Methods Enzymol 235:, 386–405. [CrossRef][PubMed]
    [Google Scholar]
  8. Denayer S., Matthijs S., Cornelis P.. ( 2007;). Pyocin S2 (Sa) kills Pseudomonas aeruginosa strains via the FpvA type I ferripyoverdine receptor. . J Bacteriol 189:, 7663–7668. [CrossRef][PubMed]
    [Google Scholar]
  9. Duport C., Baysse C., Michel-Briand Y.. ( 1995;). Molecular characterization of pyocin S3, a novel S-type pyocin from Pseudomonas aeruginosa.. J Biol Chem 270:, 8920–8927. [CrossRef][PubMed]
    [Google Scholar]
  10. Elfarash A., Wei Q., Cornelis P.. ( 2012;). The soluble pyocins S2 and S4 from Pseudomonas aeruginosa bind to the same FpvAI receptor. . Microbiologyopen 1:, 268–275. [CrossRef][PubMed]
    [Google Scholar]
  11. Farmer K. L., Thomas M. S.. ( 2004;). Isolation and characterization of Burkholderia cenocepacia mutants deficient in pyochelin production: pyochelin biosynthesis is sensitive to sulfur availability. . J Bacteriol 186:, 270–277. [CrossRef][PubMed]
    [Google Scholar]
  12. Figurski D. H., Helinski D. R.. ( 1979;). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. . Proc Natl Acad Sci U S A 76:, 1648–1652. [CrossRef][PubMed]
    [Google Scholar]
  13. Ghysels B., Dieu B. T., Beatson S. A., Pirnay J. P., Ochsner U. A., Vasil M. L., Cornelis P.. ( 2004;). FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa.. Microbiology 150:, 1671–1680. [CrossRef][PubMed]
    [Google Scholar]
  14. Gotschlich A., Huber B., Geisenberger O., Tögl A., Steidle A., Riedel K., Hill P., Tümmler B., Vandamme P.. & other authors ( 2001;). Synthesis of multiple N-acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. . Syst Appl Microbiol 24:, 1–14. [CrossRef][PubMed]
    [Google Scholar]
  15. Govan J. R.. ( 1974;). Studies on the pyocins of Pseudomonas aeruginosa: morphology and mode of action of contractile pyocins. . J Gen Microbiol 80:, 1–15. [CrossRef][PubMed]
    [Google Scholar]
  16. Hoegy F., Lee X., Noel S., Rognan D., Mislin G. L., Reimmann C., Schalk I. J.. ( 2009;). Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent pseudomonads. . J Biol Chem 284:, 14949–14957. [CrossRef][PubMed]
    [Google Scholar]
  17. Jacob F.. ( 1954;). [Induced biosynthesis and mode of action of a pyocine, antibiotic produced by Pseudomonas aeruginosa]. . Ann Inst Pasteur (Paris) 86:, 149–160.[PubMed]
    [Google Scholar]
  18. Jakes K. S.. ( 2012;). Translocation trumps receptor binding in colicin entry into Escherichia coli.. Biochem Soc Trans 40:, 1443–1448. [CrossRef][PubMed]
    [Google Scholar]
  19. Kageyama M.. ( 1964;). Studies of a pyocin. I. Physical and Chemical Properties. . J Biochem 55:, 49–53.[PubMed]
    [Google Scholar]
  20. Kelley L. A., Sternberg M. J.. ( 2009;). Protein structure prediction on the Web: a case study using the Phyre server. . Nat Protoc 4:, 363–371. [CrossRef][PubMed]
    [Google Scholar]
  21. Klaenhammer T. R.. ( 1988;). Bacteriocins of lactic acid bacteria. . Biochimie 70:, 337–349. [CrossRef][PubMed]
    [Google Scholar]
  22. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. II, Peterson K. M.. ( 1994;). pBBR1MCS: a broad-host-range cloning vector. . Biotechniques 16:, 800–802.[PubMed]
    [Google Scholar]
  23. Ling H., Saeidi N., Rasouliha B. H., Chang M. W.. ( 2010;). A predicted S-type pyocin shows a bactericidal activity against clinical Pseudomonas aeruginosa isolates through membrane damage. . FEBS Lett 584:, 3354–3358. [CrossRef][PubMed]
    [Google Scholar]
  24. Michel L., González N., Jagdeep S., Nguyen-Ngoc T., Reimmann C.. ( 2005;). PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. . Mol Microbiol 58:, 495–509. [CrossRef][PubMed]
    [Google Scholar]
  25. Michel L., Bachelard A., Reimmann C.. ( 2007;). Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa.. Microbiology 153:, 1508–1518. [CrossRef][PubMed]
    [Google Scholar]
  26. Michel-Briand Y., Baysse C.. ( 2002;). The pyocins of Pseudomonas aeruginosa.. Biochimie 84:, 499–510. [CrossRef][PubMed]
    [Google Scholar]
  27. Mislin G. L., Hoegy F., Cobessi D., Poole K., Rognan D., Schalk I. J.. ( 2006;). Binding properties of pyochelin and structurally related molecules to FptA of Pseudomonas aeruginosa.. J Mol Biol 357:, 1437–1448. [CrossRef][PubMed]
    [Google Scholar]
  28. Parret A. H., De Mot R.. ( 2002;). Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other gamma-proteobacteria. . Trends Microbiol 10:, 107–112. [CrossRef][PubMed]
    [Google Scholar]
  29. Pattery T., Hernalsteens J. P., De Greve H.. ( 1999;). Identification and molecular characterization of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. . Mol Microbiol 33:, 791–805. [CrossRef][PubMed]
    [Google Scholar]
  30. Riley M. A., Gordon D. M.. ( 1999;). The ecological role of bacteriocins in bacterial competition. . Trends Microbiol 7:, 129–133. [CrossRef][PubMed]
    [Google Scholar]
  31. Riley M. A., Wertz J. E.. ( 2002a;). Bacteriocins: evolution, ecology, and application. . Annu Rev Microbiol 56:, 117–137. [CrossRef][PubMed]
    [Google Scholar]
  32. Riley M. A., Wertz J. E.. ( 2002b;). Bacteriocin diversity: ecological and evolutionary perspectives. . Biochimie 84:, 357–364. [CrossRef][PubMed]
    [Google Scholar]
  33. Sano Y., Kageyama M.. ( 1984;). Genetic determinant of pyocin AP41 as an insert in the Pseudomonas aeruginosa chromosome. . J Bacteriol 158:, 562–570.[PubMed]
    [Google Scholar]
  34. Sano Y., Kobayashi M., Kageyama M.. ( 1993;). Functional domains of S-type pyocins deduced from chimeric molecules. . J Bacteriol 175:, 6179–6185.[PubMed]
    [Google Scholar]
  35. Shinomiya T., Shiga S., Kageyama M.. ( 1983;). Genetic determinant of pyocin R2 in Pseudomonas aeruginosa PAO. I. Localization of the pyocin R2 gene cluster between the trpCD and trpE genes. . Mol Gen Genet 189:, 375–381. [CrossRef][PubMed]
    [Google Scholar]
  36. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J.. & other authors ( 2000;). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. . Nature 406:, 959–964. [CrossRef][PubMed]
    [Google Scholar]
  37. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W.. ( 1990;). Use of T7 RNA polymerase to direct expression of cloned genes. . Methods Enzymol 185:, 60–89. [CrossRef][PubMed]
    [Google Scholar]
  38. Wei Q., Minh P. N., Dötsch A., Hildebrand F., Panmanee W., Elfarash A., Schulz S., Plaisance S., Charlier D.. & other authors ( 2012;). Global regulation of gene expression by OxyR in an important human opportunistic pathogen. . Nucleic Acids Res 40:, 4320–4333. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070672-0
Loading
/content/journal/micro/10.1099/mic.0.070672-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error