
Full text loading...
While screening a genomic library of Acinetobacter baumannii DS002 isolated from organophosphate (OP)-polluted soils, nine ORFs were identified coding for glutathione S-transferase (GST)-like proteins. These GSTs (AbGST01–AbGST09) are phylogenetically related to a number of well-characterized GST classes found in taxonomically diverse groups of organisms. Interestingly, expression of Abgst01 (GenBank accession no. KF151191) was upregulated when the bacterium was grown in the presence of an OP insecticide, methyl parathion (MeP). The gene product, AbGST01, dealkylated MeP to desMeP. An OxyR-binding motif was identified directly upstream of Abgst01. An Abgst–lacZ gene fusion lacking the OxyR-binding site showed a drastic reduction in promoter activity. Very low β-galactosidase activity levels were observed when the Abgst–lacZ fusion was mobilized into an oxyR (GenBank accession no. KF151190) null mutant of A. baumannii DS002, confirming the important role of OxyR. The OxyR-binding sites are not found upstream of other Abgst (Abgst02–Abgst09) genes. However, they contained consensus sequence motifs that can serve as possible target sites for certain well-characterized transcription factors. In support of this observation, the Abgst genes responded differentially to different oxidative stress inducers. The Abgst genes identified in A. baumannii DS002 are found to be conserved highly among all known genome sequences of A. baumannii strains. The versatile ecological adaptability of A. baumannii strains is apparent if sequence conservation is seen together with their involvement in detoxification processes.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements