1887

Abstract

While screening a genomic library of DS002 isolated from organophosphate (OP)-polluted soils, nine ORFs were identified coding for glutathione -transferase (GST)-like proteins. These GSTs (AbGST01–AbGST09) are phylogenetically related to a number of well-characterized GST classes found in taxonomically diverse groups of organisms. Interestingly, expression of (GenBank accession no. KF151191) was upregulated when the bacterium was grown in the presence of an OP insecticide, methyl parathion (MeP). The gene product, AbGST01, dealkylated MeP to desMeP. An OxyR-binding motif was identified directly upstream of . An gene fusion lacking the OxyR-binding site showed a drastic reduction in promoter activity. Very low β-galactosidase activity levels were observed when the fusion was mobilized into an (GenBank accession no. KF151190) null mutant of DS002, confirming the important role of OxyR. The OxyR-binding sites are not found upstream of other () genes. However, they contained consensus sequence motifs that can serve as possible target sites for certain well-characterized transcription factors. In support of this observation, the genes responded differentially to different oxidative stress inducers. The genes identified in DS002 are found to be conserved highly among all known genome sequences of strains. The versatile ecological adaptability of strains is apparent if sequence conservation is seen together with their involvement in detoxification processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070664-0
2014-01-01
2020-05-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/102.html?itemId=/content/journal/micro/10.1099/mic.0.070664-0&mimeType=html&fmt=ahah

References

  1. Allocati N., Masulli M., Pietracupa M., Federici L., Di Ilio C.. ( 2006;). Evolutionarily conserved structural motifs in bacterial GST (glutathione S-transferase) are involved in protein folding and stability. Biochem J394:11–17 [CrossRef][PubMed]
    [Google Scholar]
  2. Allocati N., Federici L., Masulli M., Favaloro B., Di Ilio C.. ( 2008;). Cysteine 10 is critical for the activity of Ochrobactrum anthropi glutathione transferase and its mutation to alanine causes the preferential binding of glutathione to the H-site. Proteins71:16–23 [CrossRef][PubMed]
    [Google Scholar]
  3. Allocati N., Federici L., Masulli M., Di Ilio C.. ( 2009;). Glutathione transferases in bacteria. FEBS J276:58–75 [CrossRef][PubMed]
    [Google Scholar]
  4. Alting-Mees M. A., Short J. M.. ( 1989;). pBluescript II: gene mapping vectors. Nucleic Acids Res17:9494 [CrossRef][PubMed]
    [Google Scholar]
  5. Anderson P. N., Eaton D. L., Murphy S. D.. ( 1992;). Comparative metabolism of methyl parathion in intact and subcellular fractions of isolated rat hepatocytes. Fundam Appl Toxicol18:221–226 [CrossRef][PubMed]
    [Google Scholar]
  6. Arca P., Rico M., Braña A. F., Villar C. J., Hardisson C., Suárez J. E.. ( 1988;). Formation of an adduct between fosfomycin and glutathione: a new mechanism of antibiotic resistance in bacteria. Antimicrob Agents Chemother32:1552–1556 [CrossRef][PubMed]
    [Google Scholar]
  7. Arca P., Hardisson C., Suárez J. E.. ( 1990;). Purification of a glutathione S-transferase that mediates fosfomycin resistance in bacteria. Antimicrob Agents Chemother34:844–848 [CrossRef][PubMed]
    [Google Scholar]
  8. Armstrong R. N.. ( 1997;). Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol10:2–18 [CrossRef][PubMed]
    [Google Scholar]
  9. Aslund F., Zheng M., Beckwith J., Storz G.. ( 1999;). Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci U S A96:6161–6165 [CrossRef][PubMed]
    [Google Scholar]
  10. Bader R., Leisinger T.. ( 1994;). Isolation and characterization of the Methylophilus sp. strain DM11 gene encoding dichloromethane dehalogenase/glutathione S-transferase. J Bacteriol176:3466–3473[PubMed]
    [Google Scholar]
  11. Benke G. M., Murphy S. D.. ( 1975;). The influence of age on the toxicity and metabolism of methyl parathion and parathion in male and female rats. Toxicol Appl Pharmacol31:254–269 [CrossRef][PubMed]
    [Google Scholar]
  12. Bull A. W., Seeley S. K., Geno J., Mannervik B.. ( 2002;). Conjugation of the linoleic acid oxidation product, 13-oxooctadeca-9,11-dienoic acid, a bioactive endogenous substrate for mammalian glutathione transferase. Biochim Biophys Acta1571:77–82 [CrossRef][PubMed]
    [Google Scholar]
  13. Christman M. F., Storz G., Ames B. N.. ( 1989;). OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci U S A86:3484–3488 [CrossRef][PubMed]
    [Google Scholar]
  14. Di Ilio C., Aceto A., Piccolomini R., Allocati N., Faraone A., Cellini L., Ravagnan G., Federici G.. ( 1988;). Purification and characterization of three forms of glutathione transferase from Proteus mirabilis . Biochem J255:971–975[PubMed]
    [Google Scholar]
  15. Ding H., Demple B.. ( 1998;). Thiol-mediated disassembly and reassembly of [2Fe-2S] clusters in the redox-regulated transcription factor SoxR. Biochemistry37:17280–17286 [CrossRef][PubMed]
    [Google Scholar]
  16. Edwards F. L., Yedjou C. G., Tchounwou P. B.. ( 2013;). Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG2) cells. Environ Toxicol28:342–348 [CrossRef][PubMed]
    [Google Scholar]
  17. Farr S. B., Kogoma T.. ( 1991;). Oxidative stress responses in Escherichia coli and Salmonella typhimurium . Microbiol Rev55:561–585[PubMed]
    [Google Scholar]
  18. Fekete R. A., Miller M. J., Chattoraj D. K.. ( 2003;). Fluorescently labeled oligonucleotide extension: a rapid and quantitative protocol for primer extension. Biotechniques35:90–94, 97–98[PubMed]
    [Google Scholar]
  19. Figurski D. H., Helinski D. R.. ( 1979;). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A76:1648–1652 [CrossRef][PubMed]
    [Google Scholar]
  20. Gaudu P., Weiss B.. ( 1996;). SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form. Proc Natl Acad Sci U S A93:10094–10098 [CrossRef][PubMed]
    [Google Scholar]
  21. Habig W. H., Pabst M. J., Jakoby W. B.. ( 1974;). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem249:7130–7139[PubMed]
    [Google Scholar]
  22. Hanahan D.. ( 1985;).E. coli.DNA CloningA Practical Approach
  23. Hayes J. D., Flanagan J. U., Jowsey I. R.. ( 2005;). Glutathione transferases. Annu Rev Pharmacol Toxicol45:51–88 [CrossRef][PubMed]
    [Google Scholar]
  24. Hofer B., Backhaus S., Timmis K. N.. ( 1994;). The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene144:9–16 [CrossRef][PubMed]
    [Google Scholar]
  25. Jair K. W., Fawcett W. P., Fujita N., Ishihama A., Wolf R. E. Jr. ( 1996;). Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes. Mol Microbiol19:307–317 [CrossRef][PubMed]
    [Google Scholar]
  26. Jakobsson P. J., Morgenstern R., Mancini J., Ford-Hutchinson A., Persson B.. ( 1999;). Common structural features of MAPEG – a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci8:689–692 [CrossRef][PubMed]
    [Google Scholar]
  27. Kim S. G., Lee S. J.. ( 2007;). PI3K, RSK, and mTOR signal networks for the GST gene regulation. Toxicol Sci96:206–213 [CrossRef][PubMed]
    [Google Scholar]
  28. La Roche S. D., Leisinger T.. ( 1990;). Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family. J Bacteriol172:164–171[PubMed]
    [Google Scholar]
  29. Laborde E.. ( 2010;). Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ17:1373–1380 [CrossRef][PubMed]
    [Google Scholar]
  30. Laura D., De Socio G., Frassanito R., Rotilio D.. ( 1996;). Effects of atrazine on Ochrobactrum anthropi membrane fatty acids. Appl Environ Microbiol62:2644–2646[PubMed]
    [Google Scholar]
  31. Lawrence R. A., Burk R. F.. ( 1976;). Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun71:952–958 [CrossRef][PubMed]
    [Google Scholar]
  32. LeBlanc J. J., Brassinga A. K., Ewann F., Davidson R. J., Hoffman P. S.. ( 2008;). An ortholog of OxyR in Legionella pneumophila is expressed postexponentially and negatively regulates the alkyl hydroperoxide reductase (ahpC2D) operon. J Bacteriol190:3444–3455 [CrossRef][PubMed]
    [Google Scholar]
  33. Li Z., Demple B.. ( 1994;). SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA. J Biol Chem269:18371–18377[PubMed]
    [Google Scholar]
  34. McCarthy D. L., Navarrete S., Willett W. S., Babbitt P. C., Copley S. D.. ( 1996;). Exploration of the relationship between tetrachlorohydroquinone dehalogenase and the glutathione S-transferase superfamily. Biochemistry35:14634–14642 [CrossRef][PubMed]
    [Google Scholar]
  35. Miller J.. ( 1972;). Experiments in Molecular Genetics352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  36. Mueller J. G., Chapman P. J., Blattmann B. O., Pritchard P. H.. ( 1990;). Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis . Appl Environ Microbiol56:1079–1086[PubMed]
    [Google Scholar]
  37. Nishida M., Kong K. H., Inoue H., Takahashi K.. ( 1994;). Molecular cloning and site-directed mutagenesis of glutathione S-transferase from Escherichia coli. The conserved tyrosyl residue near the N terminus is not essential for catalysis. J Biol Chem269:32536–32541[PubMed]
    [Google Scholar]
  38. Oakley A. J.. ( 2005;). Glutathione transferases: new functions. Curr Opin Struct Biol15:716–723 [CrossRef][PubMed]
    [Google Scholar]
  39. Ochsner U. A., Vasil M. L., Alsabbagh E., Parvatiyar K., Hassett D. J.. ( 2000;). Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF . J Bacteriol182:4533–4544 [CrossRef][PubMed]
    [Google Scholar]
  40. Orser C. S., Dutton J., Lange C., Jablonski P., Xun L., Hargis M.. ( 1993;). Characterization of a Flavobacterium glutathione S-transferase gene involved reductive dechlorination. J Bacteriol175:2640–2644[PubMed]
    [Google Scholar]
  41. Pandeeti E. V., Chinnaboina M. R., Siddavattam D.. ( 2009;). Benzoate-mediated changes on expression profile of soluble proteins in Serratia sp. DS001. Lett Appl Microbiol48:566–571 [CrossRef][PubMed]
    [Google Scholar]
  42. Pandey J. P., Gorla P., Manavathi B., Siddavattam D.. ( 2009;). mRNA secondary structure modulates the translation of organophosphate hydrolase (OPH) in E. coli . Mol Biol Rep36:449–454 [CrossRef][PubMed]
    [Google Scholar]
  43. Parti R. P., Horbay M. A., Liao M., Dillon J. A.. ( 2013;). Regulation of minD by oxyR in Neisseria gonorrhoeae . Res Microbiol164:406–415 [CrossRef][PubMed]
    [Google Scholar]
  44. Pearson W. R., Windle J. J., Morrow J. F., Benson A. M., Talalay P.. ( 1983;). Increased synthesis of glutathione S-transferases in response to anticarcinogenic antioxidants. Cloning and measurement of messenger RNA. J Biol Chem258:2052–2062[PubMed]
    [Google Scholar]
  45. Piccolomini R., Di Ilio C., Aceto A., Allocati N., Faraone A., Cellini L., Ravagnan G., Federici G.. ( 1989;). Glutathione transferase in bacteria: subunit composition and antigenic characterization. J Gen Microbiol135:3119–3125[PubMed]
    [Google Scholar]
  46. Podgorski I., Bull A. W.. ( 2001;). Energy-dependent export of the 13-oxooctadecadienoic acid-glutathione conjugate from HT-29 cells and plasma membrane vesicles. Biochim Biophys Acta1533:55–65 [CrossRef][PubMed]
    [Google Scholar]
  47. Radulovic L. L., LaFerla J. J., Kulkarni A. P.. ( 1986;). Human placental glutathione S-transferase-mediated metabolism of methyl parathion. Biochem Pharmacol35:3473–3480 [CrossRef][PubMed]
    [Google Scholar]
  48. Radulovic L. L., Kulkarni A. P., Dauterman W. C.. ( 1987;). Biotransformation of methyl parathion by human foetal liver glutathione S-transferases: an in vitro study. Xenobiotica17:105–114 [CrossRef][PubMed]
    [Google Scholar]
  49. Rife C. L., Parsons J. F., Xiao G., Gilliland G. L., Armstrong R. N.. ( 2003;). Conserved structural elements in glutathione transferase homologues encoded in the genome of Escherichia coli . Proteins53:777–782 [CrossRef][PubMed]
    [Google Scholar]
  50. Rossjohn J., McKinstry W. J., Oakley A. J., Verger D., Flanagan J., Chelvanayagam G., Tan K. L., Board P. G., Parker M. W.. ( 1998;). Human theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active site. Structure6:309–322 [CrossRef][PubMed]
    [Google Scholar]
  51. Rowe J. D., Nieves E., Listowsky I.. ( 1997;). Subunit diversity and tissue distribution of human glutathione S-transferases: interpretations based on electrospray ionization-MS and peptide sequence-specific antisera. Biochem J325:481–486[PubMed]
    [Google Scholar]
  52. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  53. Sanger F., Coulson A. R.. ( 1975;). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol94:441–448 [CrossRef][PubMed]
    [Google Scholar]
  54. Scholtz R., Wackett L. P., Egli C., Cook A. M., Leisinger T.. ( 1988;). Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium. J Bacteriol170:5698–5704[PubMed]
    [Google Scholar]
  55. Seeley S. K., Poposki J. A., Maksimchuk J., Tebbe J., Gaudreau J., Mannervik B., Bull A. W.. ( 2006;). Metabolism of oxidized linoleic acid by glutathione transferases: peroxidase activity toward 13-hydroperoxyoctadecadienoic acid. Biochim Biophys Acta1760:1064–1070 [CrossRef][PubMed]
    [Google Scholar]
  56. Sheehan D., Meade G., Foley V. M., Dowd C. A.. ( 2001;). Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J360:1–16 [CrossRef][PubMed]
    [Google Scholar]
  57. Simon R., Priefer U., Pühler A.. ( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology1:784–791 [CrossRef]
    [Google Scholar]
  58. Skopelitou K., Dhavala P., Papageorgiou A. C., Labrou N. E.. ( 2012;). A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily. PLoS ONE7:e34263 [CrossRef][PubMed]
    [Google Scholar]
  59. Somara S., Siddavattam D.. ( 1995;). Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum . Biochem Mol Biol Int36:627–631[PubMed]
    [Google Scholar]
  60. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J.. ( 1987;). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol9:27–39 [CrossRef]
    [Google Scholar]
  61. Storz G., Tartaglia L. A., Ames B. N.. ( 1990;). The OxyR regulon. Antonie van Leeuwenhoek58:157–161 [CrossRef][PubMed]
    [Google Scholar]
  62. Studier F. W., Moffatt B. A.. ( 1986;). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130[PubMed][CrossRef]
    [Google Scholar]
  63. Tartaglia L. A., Storz G., Ames B. N.. ( 1989;). Identification and molecular analysis of oxyR-regulated promoters important for the bacterial adaptation to oxidative stress. J Mol Biol210:709–719 [CrossRef][PubMed]
    [Google Scholar]
  64. Towner K. J.. ( 2009;). Acinetobacter: an old friend, but a new enemy. J Hosp Infect73:355–363 [CrossRef][PubMed]
    [Google Scholar]
  65. Vuilleumier S.. ( 1997;). Bacterial glutathione S-transferases: what are they good for. J Bacteriol179:1431–1441[PubMed]
    [Google Scholar]
  66. Vuilleumier S., Pagni M.. ( 2002;). The elusive roles of bacterial glutathione S-transferases: new lessons from genomes. Appl Microbiol Biotechnol58:138–146 [CrossRef][PubMed]
    [Google Scholar]
  67. Vuilleumier S., Ivos N., Dean M., Leisinger T.. ( 2001;). Sequence variation in dichloromethane dehalogenases/glutathione S-transferases. Microbiology147:611–619[PubMed]
    [Google Scholar]
  68. Wagner U., Edwards R., Dixon D. P., Mauch F.. ( 2002;). Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol49:515–532 [CrossRef][PubMed]
    [Google Scholar]
  69. Wei Q., Minh P. N. L., Dötsch A., Hildebrand F., Panmanee W., Elfarash A., Schulz S., Plaisance S., Charlier D.. & other authors ( 2012;). Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res40:4320–4333 [CrossRef][PubMed]
    [Google Scholar]
  70. Whitby P. W., Morton D. J., Vanwagoner T. M., Seale T. W., Cole B. K., Mussa H. J., McGhee P. A., Bauer C. Y., Springer J. M., Stull T. L.. ( 2012;). Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness. PLoS ONE7:e50588 [CrossRef][PubMed]
    [Google Scholar]
  71. Wiktelius E., Stenberg G.. ( 2007;). Novel class of glutathione transferases from cyanobacteria exhibit high catalytic activities towards naturally occurring isothiocyanates. Biochem J406:115–123 [CrossRef][PubMed]
    [Google Scholar]
  72. Woodford N., Turton J. F., Livermore D. M.. ( 2011;). Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev35:736–755 [CrossRef][PubMed]
    [Google Scholar]
  73. Wu J., Weiss B.. ( 1991;). Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli . J Bacteriol173:2864–2871[PubMed]
    [Google Scholar]
  74. Yamamoto K., Higashiura A., Suzuki M., Aritake K., Urade Y., Uodome N., Nakagawa A.. ( 2013;). Crystal structure of a Bombyx mori sigma-class glutathione transferase exhibiting prostaglandin E synthase activity. Biochim Biophys Acta1830:3711–3718 [CrossRef][PubMed]
    [Google Scholar]
  75. Ying B. W., Fourmy D., Yoshizawa S.. ( 2007;). Substitution of the use of radioactivity by fluorescence for biochemical studies of RNA. RNA13:2042–2050 [CrossRef][PubMed]
    [Google Scholar]
  76. Zheng M., Aslund F., Storz G.. ( 1998;). Activation of the OxyR transcription factor by reversible disulfide bond formation. Science279:1718–1722 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070664-0
Loading
/content/journal/micro/10.1099/mic.0.070664-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error