1887

Abstract

For naturally competent bacteria, spatially structured growth can provide an environment for enhanced horizontal gene transfer through transformation and recombination. DNA is often present in the extracellular environment, such as in the extracellular matrix of biofilms, and the lysis of a single cell can result in high local DNA concentrations. is a naturally competent plant pathogen that typically lives in a surface-attached state, yet previous work characterizing the competence of this organism was conducted with planktonic cells in liquid environments. Here, we show that transformation and recombination efficiencies are two to three orders of magnitude higher for cells grown on solid compared with liquid media, with maximum recombination efficiencies of about 10. Cells were highly competent throughout their exponential growth phase, with no significant change in recombination efficiencies until population growth rates began to slow. Mutations in type IV pili, competency-related, and cell–cell signalling genes significantly impacted the ability of to acquire and incorporate DNA. Because is highly competent when growing in a surface-attached state, as it does within its insect vectors and host plants, recombination of naturally transformed DNA could be a significant route by which horizontal gene transfer occurs in natural environments.

Funding
This study was supported by the:
  • USDA NIFA
  • California Agricultural Experiment Station
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070581-0
2014-01-01
2021-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/37.html?itemId=/content/journal/micro/10.1099/mic.0.070581-0&mimeType=html&fmt=ahah

References

  1. Almeida R. P. P., Nascimento F. E., Chau J., Prado S. S., Tsai C. W., Lopes S. A., Lopes J. R. S. ( 2008). Genetic structure and biology of Xylella fastidiosa strains causing disease in citrus and coffee in Brazil. Appl Environ Microbiol 74:3690–3701 [View Article][PubMed]
    [Google Scholar]
  2. Assalkhou R., Balasingham S., Collins R. F., Frye S. A., Davidsen T., Benam A. V., Bjørås M., Derrick J. P., Tønjum T. ( 2007). The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. Microbiology 153:1593–1603 [View Article][PubMed]
    [Google Scholar]
  3. Baltrus D. A., Guillemin K., Phillips P. C. ( 2008). Natural transformation increases the rate of adaptation in the human pathogen Helicobacter pylori.. Evolution 62:39–49[PubMed]
    [Google Scholar]
  4. Bates D., Maechler M. ( 2013). Package ‘lme4’. http://lme4.r-forge.r-project.org/
  5. Baur B., Hanselmann K., Schlimme W., Jenni B. ( 1996). Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl Environ Microbiol 62:3673–3678[PubMed]
    [Google Scholar]
  6. Bertolla F., Frostegård Å., Brito B., Nesme X., Simonet P. ( 1999). During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol Plant Microbe Interact 12:467–472 [View Article]
    [Google Scholar]
  7. Burton B., Dubnau D. ( 2010). Membrane-associated DNA transport machines. Cold Spring Harb Perspect Biol 2:a000406 [View Article][PubMed]
    [Google Scholar]
  8. Busch S., Rosenplänter C., Averhoff B. ( 1999). Identification and characterization of ComE and ComF, two novel pilin-like competence factors involved in natural transformation of Acinetobacter sp. strain BD413. Appl Environ Microbiol 65:4568–4574[PubMed]
    [Google Scholar]
  9. Carruthers M. D., Tracy E. N., Dickson A. C., Ganser K. B., Munson R. S., Bakaletz L. O. ( 2012).Haemophilus influenzaepilcom J Bacteriol 194:1927–1933 [View Article][PubMed]
    [Google Scholar]
  10. Chatterjee S., Almeida R. P. P., Lindow S. ( 2008a). Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa.. Annu Rev Phytopathol 46:243–271 [View Article][PubMed]
    [Google Scholar]
  11. Chatterjee S., Wistrom C., Lindow S. E. ( 2008b). A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa.. Proc Natl Acad Sci U S A 105:2670–2675 [View Article][PubMed]
    [Google Scholar]
  12. Chen I., Dubnau D. ( 2004). DNA uptake during bacterial transformation. Nat Rev Microbiol 2:241–249 [View Article][PubMed]
    [Google Scholar]
  13. Cheng D. W., Lin H., Civerolo E. L. ( 2010). Extracellular genomic DNA mediates enhancement of Xylella fastidiosa biofilm formation in vitro.. J Plant Pathol 92:415–420 [View Article]
    [Google Scholar]
  14. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. ( 1995). Microbial biofilms. Annu Rev Microbiol 49:711–745 [View Article][PubMed]
    [Google Scholar]
  15. Coupat-Goutaland B., Bernillon D., Guidot A., Prior P., Nesme X., Bertolla F. ( 2011). Ralstonia solanacearum virulence increased following large interstrain gene transfers by natural transformation. Mol Plant Microbe Interact 24:497–505 [View Article][PubMed]
    [Google Scholar]
  16. Dubnau D., Hahn J., Roggiani M., Piazza F., Weinrauch Y. ( 1994). Two-component regulators and genetic competence in Bacillus subtilis.. Res Microbiol 145:403–411 [View Article][PubMed]
    [Google Scholar]
  17. Flemming H.-C., Wingender J. ( 2010). The biofilm matrix. Nat Rev Microbiol 8:623–633[PubMed]
    [Google Scholar]
  18. Friesen T. L., Stukenbrock E. H., Liu Z. H., Meinhardt S., Ling H., Faris J. D., Rasmussen J. B., Solomon P. S., McDonald B. A., Oliver R. P. ( 2006). Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956 [View Article][PubMed]
    [Google Scholar]
  19. Grossman A. D. ( 1995). Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis.. Annu Rev Genet 29:477–508 [View Article][PubMed]
    [Google Scholar]
  20. Guilhabert M. R., Kirkpatrick B. C. ( 2005).Xylella fastidiosaX. fastidiosa Mol Plant Microbe Interact 18:856–868 [View Article][PubMed]
    [Google Scholar]
  21. Hamilton H. L., Dillard J. P. ( 2006). Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol 59:376–385 [View Article][PubMed]
    [Google Scholar]
  22. Håvarstein L. S., Hakenbeck R., Gaustad P. ( 1997). Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J Bacteriol 179:6589–6594[PubMed]
    [Google Scholar]
  23. Hendrickx L., Hausner M., Wuertz S. ( 2003). Natural genetic transformation in monoculture Acinetobacter sp. strain BD413 biofilms. Appl Environ Microbiol 69:1721–1727 [View Article][PubMed]
    [Google Scholar]
  24. Hill B., Purcell A. H. ( 1995). Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata.. Phytopathology 85:209–212 [View Article]
    [Google Scholar]
  25. Hothorn T., Bretz F., Westfall P. ( 2008). Simultaneous inference in general parametric models. Biom J 50:346–363 [View Article][PubMed]
    [Google Scholar]
  26. Johnson M. D. L., Garrett C. K., Bond J. E., Coggan K. A., Wolfgang M. C., Redinbo M. R. ( 2011). Pseudomonas aeruginosa PilY1 binds integrin in an RGD- and calcium-dependent manner. PLoS ONE 6:e29629 [View Article][PubMed]
    [Google Scholar]
  27. Kadurugamuwa J. L., Beveridge T. J. ( 1995). Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008[PubMed]
    [Google Scholar]
  28. Killiny N., Almeida R. P. P. ( 2009). Host structural carbohydrate induces vector transmission of a bacterial plant pathogen. Proc Natl Acad Sci U S A 106:22416–22420 [View Article][PubMed]
    [Google Scholar]
  29. Kung S. H., Almeida R. P. P. ( 2011). Natural competence and recombination in the plant pathogen Xylella fastidiosa.. Appl Environ Microbiol 77:5278–5284 [View Article][PubMed]
    [Google Scholar]
  30. Kung S. H., Retchless A. C., Kwan J. Y., Almeida R. P. P. ( 2013). Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa.. Appl Environ Microbiol 79:1712–1717 [View Article][PubMed]
    [Google Scholar]
  31. Li Y.-H., Lau P. C. Y., Lee J. H., Ellen R. P., Cvitkovitch D. G. ( 2001). Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908 [View Article][PubMed]
    [Google Scholar]
  32. Li Y., Hao G., Galvani C. D., Meng Y., De La Fuente L., Hoch H. C., Burr T. J. ( 2007). Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. Microbiology 153:719–726 [View Article][PubMed]
    [Google Scholar]
  33. Ma W., Dong F. F. T., Stavrinides J., Guttman D. S. ( 2006). Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet 2:e209 [View Article][PubMed]
    [Google Scholar]
  34. Madsen J. S., Burmølle M., Hansen L. H., Sørensen S. J. ( 2012). The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 65:183–195 [View Article][PubMed]
    [Google Scholar]
  35. Maeda S., Ito M., Ando T., Ishimoto Y., Fujisawa Y., Takahashi H., Matsuda A., Sawamura A., Kato S. ( 2006). Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli.. FEMS Microbiol Lett 255:115–120 [View Article][PubMed]
    [Google Scholar]
  36. Matsumoto A., Igo M. M. ( 2010). Species-specific type II restriction-modification system of Xylella fastidiosa Temecula1. Appl Environ Microbiol 76:4092–4095 [View Article][PubMed]
    [Google Scholar]
  37. Matsumoto A., Young G. M., Igo M. M. ( 2009). Chromosome-based genetic complementation system for Xylella fastidiosa.. Appl Environ Microbiol 75:1679–1687 [View Article][PubMed]
    [Google Scholar]
  38. Mattick J. S. ( 2002). Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314 [View Article][PubMed]
    [Google Scholar]
  39. Meibom K. L., Blokesch M., Dolganov N. A., Wu C.-Y., Schoolnik G. K. ( 2005). Chitin induces natural competence in Vibrio cholerae.. Science 310:1824–1827 [View Article][PubMed]
    [Google Scholar]
  40. Meier P., Berndt C., Weger N., Wackernagel W. ( 2002). Natural transformation of Pseudomonas stutzeri by single-stranded DNA requires type IV pili, competence state and ComA. FEMS Microbiol Lett 207:75–80 [View Article][PubMed]
    [Google Scholar]
  41. Meng Y., Li Y., Galvani C. D., Hao G., Turner J. N., Burr T. J., Hoch H. C. ( 2005). Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187:5560–5567 [View Article][PubMed]
    [Google Scholar]
  42. Newman K. L., Almeida R. P. P., Purcell A. H., Lindow S. E. ( 2004). Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proc Natl Acad Sci U S A 101:1737–1742 [View Article][PubMed]
    [Google Scholar]
  43. Nunes L. R., Rosato Y. B., Muto N. H., Yanai G. M., da Silva V. S., Leite D. B., Gonçalves E. R., de Souza A. A., Coletta-Filho H. D. & other authors ( 2003). Microarray analyses of Xylella fastidiosa provide evidence of coordinated transcription control of laterally transferred elements. Genome Res 13:570–578 [View Article][PubMed]
    [Google Scholar]
  44. Nunney L., Yuan X., Bromley R. E., Stouthamer R. ( 2012). Detecting genetic introgression: high levels of intersubspecific recombination found in Xylella fastidiosa in Brazil. Appl Environ Microbiol 78:4702–4714 [View Article][PubMed]
    [Google Scholar]
  45. O’Toole G. A., Kolter R. ( 1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304 [View Article][PubMed]
    [Google Scholar]
  46. Palmen R., Vosman B., Buijsman P., Breek C. K. D., Hellingwerf K. J. ( 1993). Physiological characterization of natural transformation in Acinetobacter calcoaceticus.. J Gen Microbiol 139:295–305 [View Article][PubMed]
    [Google Scholar]
  47. Reddy J. D., Reddy S. L., Hopkins D. L., Gabriel D. W. ( 2007). TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines. Mol Plant Microbe Interact 20:403–410 [View Article][PubMed]
    [Google Scholar]
  48. Redfield R. J. ( 1993). Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation. J Hered 84:400–404[PubMed]
    [Google Scholar]
  49. Roper M. C., Greve L. C., Warren J. G., Labavitch J. M., Kirkpatrick B. C. ( 2007). Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines. Mol Plant Microbe Interact 20:411–419 [View Article][PubMed]
    [Google Scholar]
  50. Scally M., Schuenzel E. L., Stouthamer R., Nunney L. ( 2005). Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contributions of recombination and point mutation to clonal diversity. Appl Environ Microbiol 71:8491–8499 [View Article][PubMed]
    [Google Scholar]
  51. Suckow G., Seitz P., Blokesch M. ( 2011). Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J Bacteriol 193:4914–4924 [View Article][PubMed]
    [Google Scholar]
  52. Tribble G. D., Rigney T. W., Dao D.-H. V., Wong C. T., Kerr J. E., Taylor B. E., Pacha S., Kaplan H. B. ( 2012). Natural competence is a major mechanism for horizontal DNA transfer in the oral pathogen Porphyromonas gingivalis. MBio 3:e00231-11 [View Article][PubMed]
    [Google Scholar]
  53. Van Sluys M. A., de Oliveira M. C., Monteiro-Vitorello C. B., Miyaki C. Y., Furlan L. R., Camargo L. E. A., da Silva A. C. R., Moon D. H., Takita M. A. & other authors ( 2003). Comparative analyses of the complete genome sequences of Pierce’s disease and citrus variegated chlorosis strains of Xylella fastidiosa.. J Bacteriol 185:1018–1026 [View Article][PubMed]
    [Google Scholar]
  54. Wall D., Kaiser D. ( 1999). Type IV pili and cell motility. Mol Microbiol 32:1–10 [View Article][PubMed]
    [Google Scholar]
  55. Wang N., Li J.-L., Lindow S. E. ( 2012). RpfF-dependent regulon of Xylella fastidiosa.. Phytopathology 102:1045–1053 [View Article][PubMed]
    [Google Scholar]
  56. Yuan X., Morano L., Bromley R., Spring-Pearson S., Stouthamer R., Nunney L. ( 2010). Multilocus sequence typing of Xylella fastidiosa causing Pierce’s disease and oleander leaf scorch in the United States. Phytopathology 100:601–611 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070581-0
Loading
/content/journal/micro/10.1099/mic.0.070581-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error