Conservation of the PTEN catalytic motif in the bacterial undecaprenyl pyrophosphate phosphatase, BacA/UppP Free

Abstract

Isoprenoid lipid carriers are essential in protein glycosylation and bacterial cell envelope biosynthesis. The enzymes involved in their metabolism (synthases, kinases and phosphatases) are therefore critical to cell viability. In this review, we focus on two broad groups of isoprenoid pyrophosphate phosphatases. One group, containing phosphatidic acid phosphatase motifs, includes the eukaryotic dolichyl pyrophosphate phosphatases and proposed recycling bacterial undecaprenol pyrophosphate phosphatases, PgpB, YbjB and YeiU/LpxT. The second group comprises the bacterial undecaprenol pyrophosphate phosphatase, BacA/UppP, responsible for initial formation of undecaprenyl phosphate, which we predict contains a tyrosine phosphate phosphatase motif resembling that of the tumour suppressor, phosphatase and tensin homologue (PTEN). Based on protein sequence alignments across species and 2D structure predictions, we propose catalytic and lipid recognition motifs unique to BacA/UppP enzymes. The verification of our proposed active-site residues would provide new strategies for the development of substrate-specific inhibitors which mimic both the lipid and pyrophosphate moieties, leading to the development of novel antimicrobial agents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070474-0
2013-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2444.html?itemId=/content/journal/micro/10.1099/mic.0.070474-0&mimeType=html&fmt=ahah

References

  1. Adair W. L. Jr, Cafmeyer N., Keller R. K. ( 1984). Solubilization and characterization of the long chain prenyltransferase involved in dolichyl phosphate biosynthesis. J Biol Chem 259:4441–4446[PubMed]
    [Google Scholar]
  2. Albright C. F., Orlean P., Robbins P. W. ( 1989). A 13-amino acid peptide in three yeast glycosyltransferases may be involved in dolichol recognition. Proc Natl Acad Sci U S A 86:7366–7369 [View Article][PubMed]
    [Google Scholar]
  3. Alicea-Velazquez N. L., Boggon T. J. ( 2013). SHP family protein tyrosine phosphatases adopt canonical active-site conformations in the apo and phosphate-bound states. Protein Pept Lett 20:1039–1048 [View Article][PubMed]
    [Google Scholar]
  4. Allen C. M. Jr, Kalin J. R., Sack J., Verizzo D. ( 1978). CTP-dependent dolichol phosphorylation by mammalian cell homogenates. Biochemistry 17:5020–5026 [View Article][PubMed]
    [Google Scholar]
  5. Allen C. M., Muth J. D., Gildersleeve N. ( 1982). Extraction and detergent/lipid activation of dolichol kinase. Biochim Biophys Acta 712:33–41 [View Article][PubMed]
    [Google Scholar]
  6. Barr A. J., Ugochukwu E., Lee W. H., King O. N., Filippakopoulos P., Alfano I., Savitsky P., Burgess-Brown N. A., Müller S., Knapp S. ( 2009). Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 136:352–363 [View Article][PubMed]
    [Google Scholar]
  7. Bernard R., Joseph P., Guiseppi A., Chippaux M., Denizot F. ( 2003). YtsCD and YwoA, two independent systems that confer bacitracin resistance to Bacillus subtilis . FEMS Microbiol Lett 228:93–97 [View Article][PubMed]
    [Google Scholar]
  8. Bernard R., El Ghachi M., Mengin-Lecreulx D., Chippaux M., Denizot F. ( 2005). BcrC from Bacillus subtilis acts as an undecaprenyl pyrophosphate phosphatase in bacitracin resistance. J Biol Chem 280:28852–28857 [View Article][PubMed]
    [Google Scholar]
  9. Bouhss A., Trunkfield A. E., Bugg T. D., Mengin-Lecreulx D. ( 2008). The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 32:208–233 [View Article][PubMed]
    [Google Scholar]
  10. Burgos J., Hemming F. W., Pennock J. F., Morton R. A. ( 1963). Dolichol: a naturally-occurring C100 isoprenoid alcohol. Biochem J 88:470–482[PubMed]
    [Google Scholar]
  11. Cain B. D., Norton P. J., Eubanks W., Nick H. S., Allen C. M. ( 1993). Amplification of the bacA gene confers bacitracin resistance to Escherichia coli . J Bacteriol 175:3784–3789[PubMed]
    [Google Scholar]
  12. Calo D., Kaminski L., Eichler J. ( 2010). Protein glycosylation in Archaea: sweet and extreme. Glycobiology 20:1065–1076 [View Article][PubMed]
    [Google Scholar]
  13. Cantagrel V., Lefeber D. J. ( 2011). From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases. J Inherit Metab Dis 34:859–867 [View Article][PubMed]
    [Google Scholar]
  14. Cantagrel V., Lefeber D. J., Ng B. G., Guan Z., Silhavy J. L., Bielas S. L., Lehle L., Hombauer H., Adamowicz M. & other authors ( 2010). SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell 142:203–217 [View Article][PubMed]
    [Google Scholar]
  15. Carroll K. K., Guthrie N., Ravi K. ( 1992). Dolichol: function, metabolism, and accumulation in human tissues. Biochem Cell Biol 70:382–384 [View Article][PubMed]
    [Google Scholar]
  16. Chalker A. F., Ingraham K. A., Lunsford R. D., Bryant A. P., Bryant J., Wallis N. G., Broskey J. P., Pearson S. C., Holmes D. J. ( 2000). The bacA gene, which determines bacitracin susceptibility in Streptococcus pneumoniae and Staphylococcus aureus, is also required for virulence. Microbiology 146:1547–1553[PubMed]
    [Google Scholar]
  17. Chojnacki T., Dallner G. ( 1988). The biological role of dolichol. Biochem J 251:1–9[PubMed]
    [Google Scholar]
  18. Datta A. K., Lehrman M. A. ( 1993). Both potential dolichol recognition sequences of hamster GlcNAc-1-phosphate transferase are necessary for normal enzyme function. J Biol Chem 268:12663–12668[PubMed]
    [Google Scholar]
  19. de Kruijff B., van Dam V., Breukink E. ( 2008). Lipid II: a central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukot Essent Fatty Acids 79:117–121 [View Article][PubMed]
    [Google Scholar]
  20. Denecke J., Kranz C. ( 2009). Hypoglycosylation due to dolichol metabolism defects. Biochim Biophys Acta 1792:888–895 [View Article][PubMed]
    [Google Scholar]
  21. Dillon D. A., Wu W.-I., Riedel B., Wissing J. B., Dowhan W., Carman G. M. ( 1996). The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity. J Biol Chem 271:30548–30553 [View Article][PubMed]
    [Google Scholar]
  22. Dixon J. E. ( 1995). Structure and catalytic properties of protein tyrosine phosphatases. Ann N Y Acad Sci 766:18–22 [View Article][PubMed]
    [Google Scholar]
  23. Ekström T. J., Chojnacki T., Dallner G. ( 1984). Metabolic labeling of dolichol and dolichyl phosphate in isolate hepatocytes. J Biol Chem 259:10460–10468[PubMed]
    [Google Scholar]
  24. Ekström T. J., Chojnacki T., Dallner G. ( 1987). The alpha-saturation and terminal events in dolichol biosynthesis. J Biol Chem 262:4090–4097[PubMed]
    [Google Scholar]
  25. El Ghachi M., Bouhss A., Blanot D., Mengin-Lecreulx D. ( 2004). The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J Biol Chem 279:30106–30113 [View Article][PubMed]
    [Google Scholar]
  26. El Ghachi M., Derbise A., Bouhss A., Mengin-Lecreulx D. ( 2005). Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli . J Biol Chem 280:18689–18695 [View Article][PubMed]
    [Google Scholar]
  27. Endo S., Zhang Y. W., Takahashi S., Koyama T. ( 2003). Identification of human dehydrodolichyl diphosphate synthase gene. Biochim Biophys Acta 1625:291–295 [View Article][PubMed]
    [Google Scholar]
  28. Ericsson J., Appelkvist E. L., Runquist M., Dallner G. ( 1993). Biosynthesis of dolichol and cholesterol in rat liver peroxisomes. Biochimie 75:167–173 [View Article][PubMed]
    [Google Scholar]
  29. Fernandez F., Rush J. S., Toke D. A., Han G. S., Quinn J. E., Carman G. M., Choi J. Y., Voelker D. R., Aebi M., Waechter C. J. ( 2001). The CWH8 gene encodes a dolichyl pyrophosphate phosphatase with a luminally oriented active site in the endoplasmic reticulum of Saccharomyces cerevisiae . J Biol Chem 276:41455–41464 [View Article][PubMed]
    [Google Scholar]
  30. Fernandez F., Shridas P., Jiang S., Aebi M., Waechter C. J. ( 2002). Expression and characterization of a human cDNA that complements the temperature-sensitive defect in dolichol kinase activity in the yeast sec59-1 mutant: the enzymatic phosphorylation of dolichol and diacylglycerol are catalyzed by separate CTP-mediated kinase activities in Saccharomyces cerevisiae . Glycobiology 12:555–562 [View Article][PubMed]
    [Google Scholar]
  31. Funk C. R., Zimniak L., Dowhan W. ( 1992). The pgpA and pgpB genes of Escherichia coli are not essential: evidence for a third phosphatidylglycerophosphate phosphatase. J Bacteriol 174:205–213[PubMed]
    [Google Scholar]
  32. Goldstein J. L., Brown M. S. ( 1990). Regulation of the mevalonate pathway. Nature 343:425–430 [View Article][PubMed]
    [Google Scholar]
  33. Gough D. P., Hemming F. W. ( 1970). The characterization and stereochemistry of biosynthesis of dolichols in rat liver. Biochem J 118:163–166[PubMed]
    [Google Scholar]
  34. Gründahl J. E., Guan Z., Rust S., Reunert J., Müller B., Du Chesne I., Zerres K., Rudnik-Schöneborn S., Ortiz-Brüchle N. & other authors ( 2012). Life with too much polyprenol: polyprenol reductase deficiency. Mol Genet Metab 105:642–651 [View Article][PubMed]
    [Google Scholar]
  35. Guo R. T., Ko T. P., Chen A. P., Kuo C. J., Wang A. H., Liang P. H. ( 2005). Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis. J Biol Chem 280:20762–20774 [View Article][PubMed]
    [Google Scholar]
  36. Hartley M. D., Imperiali B. ( 2012). At the membrane frontier: a prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Arch Biochem Biophys 517:83–97 [View Article][PubMed]
    [Google Scholar]
  37. Hartley M. D., Larkin A., Imperiali B. ( 2008). Chemoenzymatic synthesis of polyprenyl phosphates. Bioorg Med Chem 16:5149–5156 [View Article][PubMed]
    [Google Scholar]
  38. Helenius A., Aebi M. ( 2004). Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049 [View Article][PubMed]
    [Google Scholar]
  39. Heller L., Orlean P., Adair W. L. Jr ( 1992). Saccharomyces cerevisiae sec59 cells are deficient in dolichol kinase activity. Proc Natl Acad Sci U S A 89:7013–7016 [View Article][PubMed]
    [Google Scholar]
  40. Hemrika W., Renirie R., Dekker H. L., Barnett P., Wever R. ( 1997). From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc Natl Acad Sci U S A 94:2145–2149 [View Article][PubMed]
    [Google Scholar]
  41. Hendriks W. J., Elson A., Harroch S., Pulido R., Stoker A., den Hertog J. ( 2013). Protein tyrosine phosphatases in health and disease. FEBS J 280:708–730 [View Article][PubMed]
    [Google Scholar]
  42. Hirokawa T., Boon-Chieng S., Mitaku S. ( 1998). sosui: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379 [View Article][PubMed]
    [Google Scholar]
  43. Hitchen P. G., Dell A. ( 2006). Bacterial glycoproteomics. Microbiology 152:1575–1580 [View Article][PubMed]
    [Google Scholar]
  44. Hofmann K., Stoffel W. ( 1993). TMbase – a database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 374:166
    [Google Scholar]
  45. Hunter W. N. ( 2007). The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem 282:21573–21577 [View Article][PubMed]
    [Google Scholar]
  46. Ivanov S. S., Charron G., Hang H. C., Roy C. R. ( 2010). Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J Biol Chem 285:34686–34698 [View Article][PubMed]
    [Google Scholar]
  47. Jerga A., Lu Y. J., Schujman G. E., de Mendoza D., Rock C. O. ( 2007). Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis . J Biol Chem 282:21738–21745 [View Article][PubMed]
    [Google Scholar]
  48. Jones D. T., Taylor W. R., Thornton J. M. ( 1994). A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049 [View Article][PubMed]
    [Google Scholar]
  49. Jones M. B., Rosenberg J. N., Betenbaugh M. J., Krag S. S. ( 2009). Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life. Biochim Biophys Acta 1790:485–494 [View Article][PubMed]
    [Google Scholar]
  50. Juretić D., Zoranić L., Zucić D. ( 2002). Basic charge clusters and predictions of membrane protein topology. J Chem Inf Comput Sci 42:620–632 [View Article][PubMed]
    [Google Scholar]
  51. Kahrizi K., Hu C. H., Garshasbi M., Abedini S. S., Ghadami S., Kariminejad R., Ullmann R., Chen W., Ropers H. H. & other authors ( 2011). Next generation sequencing in a family with autosomal recessive Kahrizi syndrome (OMIM 612713) reveals a homozygous frameshift mutation in SRD5A3. Eur J Hum Genet 19:115–117 [View Article][PubMed]
    [Google Scholar]
  52. Kapusta L., Zucker N., Frenckel G., Medalion B., Ben Gal T., Birk E., Mandel H., Nasser N., Morgenstern S. & other authors ( 2013). From discrete dilated cardiomyopathy to successful cardiac transplantation in congenital disorders of glycosylation due to dolichol kinase deficiency (DK1-CDG). Heart Fail Rev 18:187–196 [View Article][PubMed]
    [Google Scholar]
  53. Kasapkara C. S., Tümer L., Ezgü F. S., Hasanoğlu A., Race V., Matthijs G., Jaeken J. ( 2012). SRD5A3-CDG: a patient with a novel mutation. Eur J Paediatr Neurol 16:554–556 [View Article][PubMed]
    [Google Scholar]
  54. Kranz C., Jungeblut C., Denecke J., Erlekotte A., Sohlbach C., Debus V., Kehl H. G., Harms E., Reith A. & other authors ( 2007). A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am J Hum Genet 80:433–440 [View Article][PubMed]
    [Google Scholar]
  55. Kumar M., Balaji P. V. ( 2011). Comparative genomics analysis of completely sequenced microbial genomes reveals the ubiquity of N-linked glycosylation in prokaryotes. Mol Biosyst 7:1629–1645 [View Article][PubMed]
    [Google Scholar]
  56. Kuzuyama T. ( 2002). Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627 [View Article][PubMed]
    [Google Scholar]
  57. Larkin A., Imperiali B. ( 2011). The expanding horizons of asparagine-linked glycosylation. Biochemistry 50:4411–4426 [View Article][PubMed]
    [Google Scholar]
  58. Lee J. O., Yang H., Georgescu M. M., Di Cristofano A., Maehama T., Shi Y., Dixon J. E., Pandolfi P., Pavletich N. P. ( 1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99:323–334 [View Article][PubMed]
    [Google Scholar]
  59. Lefeber D. J., de Brouwer A. P., Morava E., Riemersma M., Schuurs-Hoeijmakers J. H., Absmanner B., Verrijp K., van den Akker W. M., Huijben K. & other authors ( 2011). Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet 7:e1002427 [View Article][PubMed]
    [Google Scholar]
  60. Lovering A. L., Safadi S. S., Strynadka N. C. ( 2012). Structural perspective of peptidoglycan biosynthesis and assembly. Annu Rev Biochem 81:451–478 [View Article][PubMed]
    [Google Scholar]
  61. Lu Y. H., Guan Z., Zhao J., Raetz C. R. ( 2011). Three phosphatidylglycerol-phosphate phosphatases in the inner membrane of Escherichia coli . J Biol Chem 286:5506–5518 [View Article][PubMed]
    [Google Scholar]
  62. Mahapatra S., Yagi T., Belisle J. T., Espinosa B. J., Hill P. J., McNeil M. R., Brennan P. J., Crick D. C. ( 2005). Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J Bacteriol 187:2747–2757 [View Article][PubMed]
    [Google Scholar]
  63. Möller S., Croning M. D., Apweiler R. ( 2001). Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653 [View Article][PubMed]
    [Google Scholar]
  64. Mookerjea S., Coolbear T., Sarkar M. L. ( 1983). Key role of dolichol phosphate in glycoprotein biosynthesis. Can J Biochem Cell Biol 61:1032–1040 [View Article][PubMed]
    [Google Scholar]
  65. Morava E., Wevers R. A., Cantagrel V., Hoefsloot L. H., Al-Gazali L., Schoots J., van Rooij A., Huijben K., van Ravenswaaij-Arts C. M. & other authors ( 2010). A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain 133:3210–3220 [View Article][PubMed]
    [Google Scholar]
  66. Neuwald A. F. ( 1997). An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci 6:1764–1767 [View Article][PubMed]
    [Google Scholar]
  67. Nothaft H., Szymanski C. M. ( 2010). Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8:765–778 [View Article][PubMed]
    [Google Scholar]
  68. Ohki R., Tateno K., Okada Y., Okajima H., Asai K., Sadaie Y., Murata M., Aiso T. ( 2003). A bacitracin-resistant Bacillus subtilis gene encodes a homologue of the membrane-spanning subunit of the Bacillus licheniformis ABC transporter. J Bacteriol 185:51–59 [View Article][PubMed]
    [Google Scholar]
  69. Pasquier C., Hamodrakas S. J. ( 1999). An hierarchical artificial neural network system for the classification of transmembrane proteins. Protein Eng 12:631–634 [View Article][PubMed]
    [Google Scholar]
  70. Pennock J. F., Hemming F. W., Morton R. A. ( 1960). Dolichol: a naturally occurring isoprenoid alcohol. Nature 186:470–472 [View Article][PubMed]
    [Google Scholar]
  71. Podlesek Z., Comino A., Herzog-Velikonja B., Zgur-Bertok D., Komel R., Grabnar M. ( 1995). Bacillus licheniformis bacitracin-resistance ABC transporter: relationship to mammalian multidrug resistance. Mol Microbiol 16:969–976 [View Article][PubMed]
    [Google Scholar]
  72. Price C. T., Al-Quadan T., Santic M., Jones S. C., Abu Kwaik Y. ( 2010). Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila . J Exp Med 207:1713–1726 [View Article][PubMed]
    [Google Scholar]
  73. Proteau P. J. ( 2004). 1-Deoxy-d-xylulose 5-phosphate reductoisomerase: an overview. Bioorg Chem 32:483–493 [View Article][PubMed]
    [Google Scholar]
  74. Rebl A., Anders E., Wimmers K., Goldammer T. ( 2009). Characterization of dehydrodolichyl diphosphate synthase gene in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 152:260–265 [View Article][PubMed]
    [Google Scholar]
  75. Reusch V. M. Jr, Salton M. R. J. ( 1984). Lipopolymers, isoprenoids, and the assembly of the gram-positive cell wall. Crit Rev Microbiol 11:129–155 [View Article][PubMed]
    [Google Scholar]
  76. Rush J. S., Cho S. K., Jiang S., Hofmann S. L., Waechter C. J. ( 2002). Identification and characterization of a cDNA encoding a dolichyl pyrophosphate phosphatase located in the endoplasmic reticulum of mammalian cells. J Biol Chem 277:45226–45234 [View Article][PubMed]
    [Google Scholar]
  77. Sagami H., Kurisaki A., Ogura K. ( 1993). Formation of dolichol from dehydrodolichol is catalyzed by NADPH-dependent reductase localized in microsomes of rat liver. J Biol Chem 268:10109–10113[PubMed]
    [Google Scholar]
  78. Sagami H., Igarashi Y., Tateyama S., Ogura K., Roos J., Lennarz W. J. ( 1996). Enzymatic formation of dehydrodolichal and dolichal, new products related to yeast dolichol biosynthesis. J Biol Chem 271:9560–9566 [View Article][PubMed]
    [Google Scholar]
  79. Schwarz F., Aebi M. ( 2011). Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21:576–582 [View Article][PubMed]
    [Google Scholar]
  80. Sebti S. M. ( 2005). Protein farnesylation: implications for normal physiology, malignant transformation, and cancer therapy. Cancer Cell 7:297–300 [View Article][PubMed]
    [Google Scholar]
  81. Shridas P., Waechter C. J. ( 2006). Human dolichol kinase, a polytopic endoplasmic reticulum membrane protein with a cytoplasmically oriented CTP-binding site. J Biol Chem 281:31696–31704 [View Article][PubMed]
    [Google Scholar]
  82. Shridas P., Rush J. S., Waechter C. J. ( 2003). Identification and characterization of a cDNA encoding a long-chain cis-isoprenyltranferase involved in dolichyl monophosphate biosynthesis in the ER of brain cells. Biochem Biophys Res Commun 312:1349–1356 [View Article][PubMed]
    [Google Scholar]
  83. Skorupinska-Tudek K., Wojcik J., Swiezewska E. ( 2008). Polyisoprenoid alcohols – recent results of structural studies. Chem Rec 8:33–45 [View Article][PubMed]
    [Google Scholar]
  84. Spyropoulos I. C., Liakopoulos T. D., Bagos P. G., Hamodrakas S. J. ( 2004). TMRPres2D: high quality visual representation of transmembrane protein models. Bioinformatics 20:3258–3260 [View Article][PubMed]
    [Google Scholar]
  85. Stukey J., Carman G. M. ( 1997). Identification of a novel phosphatase sequence motif. Protein Sci 6:469–472 [View Article][PubMed]
    [Google Scholar]
  86. Surmacz L., Swiezewska E. ( 2011). Polyisoprenoids – secondary metabolites or physiologically important superlipids. Biochem Biophys Res Commun 407:627–632 [View Article][PubMed]
    [Google Scholar]
  87. Swiezewska E., Danikiewicz W. ( 2005). Polyisoprenoids: structure, biosynthesis and function. Prog Lipid Res 44:235–258 [View Article][PubMed]
    [Google Scholar]
  88. Swoboda J. G., Campbell J., Meredith T. C., Walker S. ( 2010). Wall teichoic acid function, biosynthesis, and inhibition. ChemBioChem 11:35–45 [View Article][PubMed]
    [Google Scholar]
  89. Tabish S., Raza A., Nasir A., Zafar S., Bokhari H. ( 2011). Analysis of glycosylation motifs and glycosyltransferases in Bacteria and Archaea. Bioinformation 6:191–195 [View Article][PubMed]
    [Google Scholar]
  90. Tatar L. D., Marolda C. L., Polischuk A. N., van Leeuwen D., Valvano M. A. ( 2007). An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling. Microbiology 153:2518–2529 [View Article][PubMed]
    [Google Scholar]
  91. Teng K. H., Liang P. H. ( 2012a). Structures, mechanisms and inhibitors of undecaprenyl diphosphate synthase: a cis-prenyltransferase for bacterial peptidoglycan biosynthesis. Bioorg Chem 43:51–57 [View Article][PubMed]
    [Google Scholar]
  92. Teng K. H., Liang P. H. ( 2012b). Undecaprenyl diphosphate synthase, a cis-prenyltransferase synthesizing lipid carrier for bacterial cell wall biosynthesis. Mol Membr Biol 29:267–273 [View Article][PubMed]
    [Google Scholar]
  93. Tonks N. K. ( 2013). Protein tyrosine phosphatases – from housekeeping enzymes to master regulators of signal transduction. FEBS J 280:346–378 [View Article][PubMed]
    [Google Scholar]
  94. Touzé T., Blanot D., Mengin-Lecreulx D. ( 2008a). Substrate specificity and membrane topology of Escherichia coli PgpB, an undecaprenyl pyrophosphate phosphatase. J Biol Chem 283:16573–16583 [View Article][PubMed]
    [Google Scholar]
  95. Touzé T., Tran A. X., Hankins J. V., Mengin-Lecreulx D., Trent M. S. ( 2008b). Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol 67:264–277 [View Article][PubMed]
    [Google Scholar]
  96. Tusnády G. E., Simon I. ( 1998). Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506 [View Article][PubMed]
    [Google Scholar]
  97. Valvano M. A. ( 2008). Undecaprenyl phosphate recycling comes out of age. Mol Microbiol 67:232–235 [View Article][PubMed]
    [Google Scholar]
  98. van Berkel M. A., Rieger M., te Heesen S., Ram A. F., van den Ende H., Aebi M., Klis F. M. ( 1999). The Saccharomyces cerevisiae CWH8 gene is required for full levels of dolichol-linked oligosaccharides in the endoplasmic reticulum and for efficient N-glycosylation. Glycobiology 9:243–253 [View Article][PubMed]
    [Google Scholar]
  99. Van Horn W. D., Sanders C. R. ( 2012). Prokaryotic diacylglycerol kinase and undecaprenol kinase. Annu Rev Biophys 41:81–101 [View Article][PubMed]
    [Google Scholar]
  100. Viklund H., Elofsson A. ( 2008). octopus: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24:1662–1668 [View Article][PubMed]
    [Google Scholar]
  101. Volpe J. J., Sakakihara Y., Rust R. S. ( 1987). Dolichol kinase and the regulation of dolichyl phosphate levels in developing brain. Brain Res 428:193–200[PubMed] [CrossRef]
    [Google Scholar]
  102. Weerapana E., Imperiali B. ( 2006). Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 16:91R–101R [View Article][PubMed]
    [Google Scholar]
  103. Welti M. ( 2013). Regulation of dolichol-linked glycosylation. Glycoconj J 30:51–56 [View Article][PubMed]
    [Google Scholar]
  104. Xiao J., Engel J. L., Zhang J., Chen M. J., Manning G., Dixon J. E. ( 2011). Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proc Natl Acad Sci U S A 108:11860–11865 [View Article][PubMed]
    [Google Scholar]
  105. Zelinger L., Banin E., Obolensky A., Mizrahi-Meissonnier L., Beryozkin A., Bandah-Rozenfeld D., Frenkel S., Ben-Yosef T., Merin S. & other authors ( 2011). A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am J Hum Genet 88:207–215 [View Article][PubMed]
    [Google Scholar]
  106. Zhang X. Y., Bishop A. C. ( 2008). Engineered inhibitor sensitivity in the WPD loop of a protein tyrosine phosphatase. Biochemistry 47:4491–4500 [View Article][PubMed]
    [Google Scholar]
  107. Zhang S., Yu D. ( 2010). PI(3)king apart PTEN’s role in cancer. Clin Cancer Res 16:4325–4330 [View Article][PubMed]
    [Google Scholar]
  108. Zhang J., Guan Z., Murphy A. N., Wiley S. E., Perkins G. A., Worby C. A., Engel J. L., Heacock P., Nguyen O. K. & other authors ( 2011). Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab 13:690–700 [View Article][PubMed]
    [Google Scholar]
  109. Zhu W., Zhang Y., Sinko W., Hensler M. E., Olson J., Molohon K. J., Lindert S., Cao R., Li K. & other authors ( 2013). Antibacterial drug leads targeting isoprenoid biosynthesis. Proc Natl Acad Sci U S A 110:123–128 [View Article][PubMed]
    [Google Scholar]
  110. Züchner S., Dallman J., Wen R., Beecham G., Naj A., Farooq A., Kohli M. A., Whitehead P. L., Hulme W. & other authors ( 2011). Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet 88:201–206 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070474-0
Loading
/content/journal/micro/10.1099/mic.0.070474-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed