1887

Abstract

Methylisocitrate lyase (MCL), a signature enzyme of the methylcitrate cycle, which cleaves methylisocitrate to pyruvate and succinate, is required for propionate metabolism, for secondary metabolite production and for virulence in bacteria and fungi. Here we investigate the role of the methylcitrate cycle by generating an deletion mutant in the fungal biocontrol agent . Gene expression analysis shows that a basal expression of is observed in all growth conditions tested. Phenotypic analysis of an deletion mutant suggests the requirement of MCL in propionate resistance, growth, conidial pigmentation and germination, and abiotic stress tolerance. A plate confrontation assay did not show a difference between the WT and the Δ strain in antagonism towards . However, the Δ strain displays reduced antagonism towards . based on a secretion assay. Furthermore, an root colonization assay shows that the Δ strain had reduced ability to colonize roots, which results in reduced induction of systemic resistance towards . These data show that MCL is important not only for growth and development in . but also in antagonism, root colonization and induction of defence responses in plants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070466-0
2013-12-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2492.html?itemId=/content/journal/micro/10.1099/mic.0.070466-0&mimeType=html&fmt=ahah

References

  1. Brock M..( 2005;). Generation and phenotypic characterization of Aspergillus nidulans methylisocitrate lyase deletion mutants: methylisocitrate inhibits growth and conidiation. Appl Environ Microbiol71:5465–5475 [CrossRef][PubMed]
    [Google Scholar]
  2. Brock M., Buckel W..( 2004;). On the mechanism of action of the antifungal agent propionate. Eur J Biochem271:3227–3241 [CrossRef][PubMed]
    [Google Scholar]
  3. Brock M., Darley D., Textor S., Buckel W..( 2001;). 2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans: characterization and comparison of both enzymes. Eur J Biochem268:3577–3586 [CrossRef][PubMed]
    [Google Scholar]
  4. Brunner K., Omann M., Pucher M. E., Delic M., Lehner S. M., Domnanich P., Kratochwill K., Druzhinina I., Denk D., Zeilinger S..( 2008;). Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride.. Curr Genet54:283–299 [CrossRef][PubMed]
    [Google Scholar]
  5. Calvo A. M., Wilson R. A., Bok J. W., Keller N. P..( 2002;). Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev66:447–459 [CrossRef][PubMed]
    [Google Scholar]
  6. Contreras-Cornejo H. A., Macías-Rodríguez L., Beltrán-Peña E., Herrera-Estrella A., López-Bucio J..( 2011;). Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav6:1554–1563 [CrossRef][PubMed]
    [Google Scholar]
  7. Druzhinina I. S., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B. A., Kenerley C. M., Monte E., Mukherjee P. K., Zeilinger S., Grigoriev I. V., Kubicek C. P..( 2011;). Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol9:749–759 [CrossRef][PubMed]
    [Google Scholar]
  8. Dubey M. K., Ubhayasekera W., Sandgren M., Jensen D. F., Karlsson M..( 2012;). Disruption of the Eng18B ENGase gene in the fungal biocontrol agent Trichoderma atroviride affects growth, conidiation and antagonistic ability. PLoS ONE7:e36152 [CrossRef][PubMed]
    [Google Scholar]
  9. Dubey M. K., Broberg A., Sooriyaarachchi S., Ubhayasekera W., Jensen D. F., Karlsson M..( 2013;). The glyoxylate cycle is involved in pleotropic phenotypes, antagonism and induction of plant defence responses in the fungal biocontrol agent Trichoderma atroviride.. Fungal Genet Biol58:33–41 [CrossRef][PubMed]
    [Google Scholar]
  10. Dunn M. F., Ramírez-Trujillo J. A., Hernández-Lucas I..( 2009;). Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology155:3166–3175 [CrossRef][PubMed]
    [Google Scholar]
  11. Gould T. A., van de Langemheen H., Muñoz-Elías E. J., McKinney J. D., Sacchettini J. C..( 2006;). Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis.. Mol Microbiol61:940–947 [CrossRef][PubMed]
    [Google Scholar]
  12. Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M..( 2004;). Trichoderma species–opportunistic, avirulent plant symbionts. Nat Rev Microbiol2:43–56 [CrossRef][PubMed]
    [Google Scholar]
  13. Horswill A. R., Escalante-Semerena J. C..( 1999;). Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol181:5615–5623[PubMed]
    [Google Scholar]
  14. Ibrahim-Granet O., Dubourdeau M., Latgé J. P., Ave P., Huerre M., Brakhage A. A., Brock M..( 2008;). Methylcitrate synthase from Aspergillus fumigatus is essential for manifestation of invasive aspergillosis. Cell Microbiol10:134–148[PubMed]
    [Google Scholar]
  15. Inglis G. D., Kawchuk L. M..( 2002;). Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol48:60–70 [CrossRef][PubMed]
    [Google Scholar]
  16. Karimi M., De Meyer B., Hilson P..( 2005;). Modular cloning in plant cells. Trends Plant Sci10:103–105 [CrossRef][PubMed]
    [Google Scholar]
  17. Kück U., Hoff B..( 2006;). Application of the nourseothricin acetyltransferase gene (nat1) as dominant marker for the transformation of filamentous fungi. Fungal Genet Newsl53:9–11
    [Google Scholar]
  18. Lee S. H., Han Y. K., Yun S. H., Lee Y. W..( 2009;). Roles of the glyoxylate and methylcitrate cycles in sexual development and virulence in the cereal pathogen Gibberella zeae.. Eukaryot Cell8:1155–1164 [CrossRef][PubMed]
    [Google Scholar]
  19. Letunic I., Doerks T., Bork P..( 2009;). SMART 6: recent updates and new developments. Nucleic Acids Res37:Database issueD229–D232 [CrossRef][PubMed]
    [Google Scholar]
  20. Limenitakis J., Oppenheim R. D., Creek D. J., Foth B. J., Barrett M. P., Soldati-Favre D..( 2013;). The 2-methylcitrate cycle is implicated in the detoxification of propionate in Toxoplasma gondii.. Mol Microbiol87:894–908 [CrossRef][PubMed]
    [Google Scholar]
  21. Liu S., Lu Z., Han Y., Melamud E., Dunaway-Mariano D., Herzberg O..( 2005;). Crystal structures of 2-methylisocitrate lyase in complex with product and with isocitrate inhibitor provide insight into lyase substrate specificity, catalysis and evolution. Biochemistry44:2949–2962 [CrossRef][PubMed]
    [Google Scholar]
  22. Lorang J. M., Tuori R. P., Martinez J. P., Sawyer T. L., Redman R. S., Rollins J. A., Wolpert T. J., Johnson K. B., Rodriguez R. J..& other authors ( 2001;). Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol67:1987–1994 [CrossRef][PubMed]
    [Google Scholar]
  23. Maerker C., Rohde M., Brakhage A. A., Brock M..( 2005;). Methylcitrate synthase from Aspergillus fumigatus. Propionyl-CoA affects polyketide synthesis, growth and morphology of conidia. FEBS J272:3615–3630 [CrossRef][PubMed]
    [Google Scholar]
  24. Marchler-Bauer A., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C., Gonzales N. R..& other authors ( 2009;). CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res37:Database issueD205–D210 [CrossRef][PubMed]
    [Google Scholar]
  25. Miyakoshi S., Uchiyama H., Someya T., Satoh T., Tabuchi T..( 1987;). Distribution of the methylcitric acid cycle and β-oxidation pathway for propionate catabolism in fungi. Agric Biol Chem51:2381–2387 [CrossRef]
    [Google Scholar]
  26. Mukherjee P. K., Horwitz B. A., Kenerley C. M..( 2012;). Secondary metabolism in Trichoderma – a genomic perspective. Microbiology158:35–45 [CrossRef][PubMed]
    [Google Scholar]
  27. Müller S., Fleck C. B., Wilson D., Hummert C., Hube B., Brock M..( 2011;). Gene acquisition, duplication and metabolic specification: the evolution of fungal methylisocitrate lyases. Environ Microbiol13:1534–1548 [CrossRef][PubMed]
    [Google Scholar]
  28. Muñoz-Elías E. J., McKinney J. D..( 2005;). Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med11:638–644 [CrossRef][PubMed]
    [Google Scholar]
  29. Muñoz-Elías E. J., Upton A. M., Cherian J., McKinney J. D..( 2006;). Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol60:1109–1122 [CrossRef][PubMed]
    [Google Scholar]
  30. Nygren C. M. R., Eberhardt U., Karlsson M., Parrent J. L., Lindahl B. D., Taylor A. F..( 2008;). Growth on nitrate and occurrence of nitrate reductase-encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. New Phytol180:875–889 [CrossRef][PubMed]
    [Google Scholar]
  31. Papavizas G. C., Lumsden R. D..( 1982;). Improved medium for isolation of Trichoderma spp. from soil. Plant Dis66:1019–1020 [CrossRef]
    [Google Scholar]
  32. Pfaffl M. W..( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res29:e45 [CrossRef][PubMed]
    [Google Scholar]
  33. Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R., Lopez R..( 2005;). InterProScan: protein domains identifier. Nucleic Acids Res33:Web Server issueW116–W120 [CrossRef][PubMed]
    [Google Scholar]
  34. Salas-Marina M. A., Silva-Flores M. A., Uresti-Rivera E. E., Castro-Longoria E., Herrera-Estrella A., Casas-Flores S..( 2011;). Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol131:15–26 [CrossRef]
    [Google Scholar]
  35. Seidl V., Huemer B., Seiboth B., Kubicek C. P..( 2005;). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J272:5923–5939 [CrossRef][PubMed]
    [Google Scholar]
  36. Textor S., Wendisch V. F., De Graaf A. A., Müller U., Linder M. I., Linder D., Buckel W..( 1997;). Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch Microbiol168:428–436 [CrossRef][PubMed]
    [Google Scholar]
  37. Tzelepis G. D., Melin P., Jensen D. F., Stenlid J., Karlsson M..( 2012;). Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa.. Fungal Genet Biol49:717–730 [CrossRef][PubMed]
    [Google Scholar]
  38. Upton A. M., McKinney J. D..( 2007;). Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium smegmatis.. Microbiology153:3973–3982 [CrossRef][PubMed]
    [Google Scholar]
  39. Utermark J., Karlovsky P. .( 2008;). Genetic transformation of filamentous fungi by Agrobacterium tumefaciens. Nature Protocol Exchangehttp://www.nature.com/protocolexchange/protocols/427 [CrossRef]
    [Google Scholar]
  40. Vargas Gil S., Pastor S., March G. J..( 2009;). Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiol Res164:196–205 [CrossRef][PubMed]
    [Google Scholar]
  41. Wickel S. M., Citron C. A., Dickschat J. S..( 2013;). 2H-Pyran-2-ones from Trichoderma viride and Trichoderma asperellum.. Eur J Org Chem2013:2906–2913 [CrossRef]
    [Google Scholar]
  42. Zhang Y. Q., Keller N. P..( 2004;). Blockage of methylcitrate cycle inhibits polyketide production in Aspergillus nidulans. Mol Microbiol52:541–550 [CrossRef][PubMed]
    [Google Scholar]
  43. Zhang Y. Q., Brock M., Keller N. P..( 2004;). Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans.. Genetics168:785–794 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070466-0
Loading
/content/journal/micro/10.1099/mic.0.070466-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error