1887

Abstract

is a commensal of humans and an opportunistic pathogen. It can cause an aggressive form of infective endocarditis in healthy humans akin to . Here we compared the virulence of the genome-sequenced strain N920143 to in an experimental rat endocarditis model. N920143 caused a milder course of disease with lower levels of bacteraemia and smaller endocardial vegetations than strain Newman. However, vegetations were comparable to those produced by MRSA strain COL. Little is known about virulence factors of as systems to manipulate the bacterium genetically are currently limited. Here, we report a method for electroporation of with plasmid DNA and demonstrate that the low efficiency of transformation is due to the activity of a conserved type I restriction–modification system. To streamline the transformation process, we constructed SL01B, an strain expressing the / genes of N920143. Modified plasmid DNA isolated from SL01B transformed strains from clonal complexes 1 and 2 efficiently. A deletion mutant of N920143 lacking sortase A was significantly less virulent than the wild-type in the endocarditis model. Mutants defective in single surface proteins Fbl or vWbl were not significantly different from the wild-type but showed trends towards reduced virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070292-0
2013-10-01
2020-10-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2141.html?itemId=/content/journal/micro/10.1099/mic.0.070292-0&mimeType=html&fmt=ahah

References

  1. Anguera I., Del Río A., Miró J. M., Matínez-Lacasa X., Marco F., Gumá J. R., Quaglio G., Claramonte X., Moreno A..& other authors ( 2005;). Staphylococcus lugdunensis infective endocarditis: description of 10 cases and analysis of native valve, prosthetic valve, and pacemaker lead endocarditis clinical profiles. Heart91:e10 [CrossRef][PubMed]
    [Google Scholar]
  2. Augustin J., Götz F..( 1990;). Transformation of Staphylococcus epidermidis and other staphylococcal species with plasmid DNA by electroporation. FEMS Microbiol Lett54:203–207 [CrossRef][PubMed]
    [Google Scholar]
  3. Baba T., Bae T., Schneewind O., Takeuchi F., Hiramatsu K..( 2008;). Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol190:300–310 [CrossRef][PubMed]
    [Google Scholar]
  4. Bae T., Schneewind O..( 2006;). Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid55:58–63 [CrossRef][PubMed]
    [Google Scholar]
  5. Bieber L., Kahlmeter G..( 2010;). Staphylococcus lugdunensis in several niches of the normal skin flora. Clin Microbiol Infect16:385–388 [CrossRef][PubMed]
    [Google Scholar]
  6. Carpenter R. J., Price G. D., Boswell G. E., Nayak K. R., Ramirez A. R..( 2012;). Gerbode defect with Staphylococcus lugdunensis native tricuspid valve infective endocarditis. J Card Surg27:316–320 [CrossRef][PubMed]
    [Google Scholar]
  7. Cevasco M., Haime M..( 2012;). Aortic valve endocarditis from Staphylococcus lugdunensis.. J Card Surg27:299–300 [CrossRef][PubMed]
    [Google Scholar]
  8. Chassaîn B., Lemée L., Didi J., Thiberge J. M., Brisse S., Pons J. L., Pestel-Caron M..( 2012;). Multilocus sequence typing analysis of Staphylococcus lugdunensis implies a clonal population structure. J Clin Microbiol50:3003–3009 [CrossRef][PubMed]
    [Google Scholar]
  9. Chung K. P., Chang H. T., Liao C. H., Chu F. Y., Hsueh P. R..( 2012;). Staphylococcus lugdunensis endocarditis with isolated tricuspid valve involvement. J Microbiol Immunol Infect45:248–250 [CrossRef][PubMed]
    [Google Scholar]
  10. Corrigan R. M., Foster T. J..( 2009;). An improved tetracycline-inducible expression vector for Staphylococcus aureus.. Plasmid61:126–129 [CrossRef][PubMed]
    [Google Scholar]
  11. Corvaglia A. R., François P., Hernandez D., Perron K., Linder P., Schrenzel J..( 2010;). A type III-like restriction endonuclease functions as a major barrier to horizontal gene transfer in clinical Staphylococcus aureus strains. Proc Natl Acad Sci U S A107:11954–11958 [CrossRef][PubMed]
    [Google Scholar]
  12. Datsenko K. A., Wanner B. L..( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  13. Frank K. L., Del Pozo J. L., Patel R..( 2008;). From clinical microbiology to infection pathogenesis: how daring to be different works for Staphylococcus lugdunensis.. Clin Microbiol Rev21:111–133 [CrossRef][PubMed]
    [Google Scholar]
  14. Freney J., Brun Y., Bes M., Meugnier H., Grimont F., Grimont P. A. D., Nervi C., Fleurette J..( 1988;). Staphylococcus lugdunensis sp. nov. and Staphylococcus schleiferi sp. nov., two species from human clinical specimens. Int J Syst Bacteriol38:168–172 [CrossRef]
    [Google Scholar]
  15. Geoghegan J. A., Ganesh V. K., Smeds E., Liang X., Höök M., Foster T. J..( 2010;). Molecular characterization of the interaction of staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMM) ClfA and Fbl with fibrinogen. J Biol Chem285:6208–6216 [CrossRef][PubMed]
    [Google Scholar]
  16. Gill S. R., Fouts D. E., Archer G. L., Mongodin E. F., Deboy R. T., Ravel J., Paulsen I. T., Kolonay J. F., Brinkac L..& other authors ( 2005;). Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol187:2426–2438 [CrossRef][PubMed]
    [Google Scholar]
  17. Haley K. P., Janson E. M., Heilbronner S., Foster T. J., Skaar E. P..( 2011;). Staphylococcus lugdunensis IsdG liberates iron from host heme. J Bacteriol193:4749–4757 [CrossRef][PubMed]
    [Google Scholar]
  18. Hartford O., Francois P., Vaudaux P., Foster T. J..( 1997;). The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus aureus cell surface. Mol Microbiol25:1065–1076 [CrossRef][PubMed]
    [Google Scholar]
  19. Heilbronner S., Holden M. T., van Tonder A., Geoghegan J. A., Foster T. J., Parkhill J., Bentley S. D..( 2011;). Genome sequence of Staphylococcus lugdunensis N920143 allows identification of putative colonization and virulence factors. FEMS Microbiol Lett322:60–67 [CrossRef][PubMed]
    [Google Scholar]
  20. Huebner J., Goldmann D. A..( 1999;). Coagulase-negative staphylococci: role as pathogens. Annu Rev Med50:223–236 [CrossRef][PubMed]
    [Google Scholar]
  21. Jonsson I. M., Mazmanian S. K., Schneewind O., Bremell T., Tarkowski A..( 2003;). The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes Infect5:775–780 [CrossRef][PubMed]
    [Google Scholar]
  22. Josefsson E., Hartford O., O’Brien L., Patti J. M., Foster T..( 2001;). Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J Infect Dis184:1572–1580 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim H. K., Kim H. Y., Schneewind O., Missiakas D..( 2011;). Identifying protective antigens of Staphylococcus aureus, a pathogen that suppresses host immune responses. FASEB J25:3605–3612 [CrossRef][PubMed]
    [Google Scholar]
  24. Lee J. C., Park J. S., Shepherd S. E., Carey V., Fattom A..( 1997;). Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect Immun65:4146–4151[PubMed]
    [Google Scholar]
  25. Liu P. Y., Huang Y. F., Tang C. W., Chen Y. Y., Hsieh K. S., Ger L. P., Chen Y. S., Liu Y. C..( 2010;). Staphylococcus lugdunensis infective endocarditis: a literature review and analysis of risk factors. J Microbiol Immunol Infect43:478–484 [CrossRef][PubMed]
    [Google Scholar]
  26. Löfblom J., Kronqvist N., Uhlén M., Ståhl S., Wernérus H..( 2007;). Optimization of electroporation-mediated transformation: Staphylococcus carnosus as model organism. J Appl Microbiol102:736–747 [CrossRef][PubMed]
    [Google Scholar]
  27. Marlinghaus L., Becker K., Korte M., Neumann S., Gatermann S. G., Szabados F..( 2012;). Construction and characterization of three knockout mutants of the fbl gene in Staphylococcus lugdunensis.. APMIS120:108–116 [CrossRef][PubMed]
    [Google Scholar]
  28. McCarthy A. J., Lindsay J. A..( 2012;). The distribution of plasmids that carry virulence and resistance genes in Staphylococcus aureus is lineage associated. BMC Microbiol12:104 [CrossRef][PubMed]
    [Google Scholar]
  29. McCarthy A. J., Witney A. A., Lindsay J. A..( 2012;). Staphylococcus aureus temperate bacteriophage: carriage and horizontal gene transfer is lineage associated. Front Cell Infect Microbiol2:6 [CrossRef][PubMed]
    [Google Scholar]
  30. Mitchell J., Tristan A., Foster T. J..( 2004;). Characterization of the fibrinogen-binding surface protein Fbl of Staphylococcus lugdunensis.. Microbiology150:3831–3841 [CrossRef][PubMed]
    [Google Scholar]
  31. Monk I. R., Foster T. J..( 2012;). Genetic manipulation of Staphylococci – breaking through the barrier. Front Cell Infect Microbiol2:49 [CrossRef][PubMed]
    [Google Scholar]
  32. Monk I. R., Cook G. M., Monk B. C., Bremer P. J..( 2004;). Morphotypic conversion in Listeria monocytogenes biofilm formation: biological significance of rough colony isolates. Appl Environ Microbiol70:6686–6694 [CrossRef][PubMed]
    [Google Scholar]
  33. Monk I. R., Gahan C. G., Hill C..( 2008;). Tools for functional postgenomic analysis of listeria monocytogenes.. Appl Environ Microbiol74:3921–3934 [CrossRef][PubMed]
    [Google Scholar]
  34. Monk I. R., Shah I. M., Xu M., Tan M. W., Foster T. J..( 2012;). Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis.. MBio3:e00277-11 [CrossRef][PubMed]
    [Google Scholar]
  35. Moreillon P., Entenza J. M., Francioli P., McDevitt D., Foster T. J., François P., Vaudaux P..( 1995;). Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun63:4738–4743[PubMed]
    [Google Scholar]
  36. Nilsson M., Bjerketorp J., Guss B., Frykberg L..( 2004a;). A fibrinogen-binding protein of Staphylococcus lugdunensis.. FEMS Microbiol Lett241:87–93 [CrossRef][PubMed]
    [Google Scholar]
  37. Nilsson M., Bjerketorp J., Wiebensjö A., Ljungh A., Frykberg L., Guss B..( 2004b;). A von Willebrand factor-binding protein from Staphylococcus lugdunensis.. FEMS Microbiol Lett234:155–161 [CrossRef][PubMed]
    [Google Scholar]
  38. O’Connell Motherway M., O’Driscoll J., Fitzgerald G. F., Van Sinderen D..( 2009;). Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb Biotechnol2:321–332 [CrossRef][PubMed]
    [Google Scholar]
  39. Pishchany G., McCoy A. L., Torres V. J., Krause J. C., Crowe J. E. Jr, Fabry M. E., Skaar E. P..( 2010;). Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host Microbe8:544–550 [CrossRef][PubMed]
    [Google Scholar]
  40. Que Y. A., François P., Haefliger J. A., Entenza J. M., Vaudaux P., Moreillon P..( 2001;). Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis.. Infect Immun69:6296–6302 [CrossRef][PubMed]
    [Google Scholar]
  41. Que Y. A., Haefliger J. A., Piroth L., François P., Widmer E., Entenza J. M., Sinha B., Herrmann M., Francioli P..& other authors ( 2005;). Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med201:1627–1635 [CrossRef][PubMed]
    [Google Scholar]
  42. Sibal A. K., Lin Z., Jogia D..( 2011;). Coagulase-negative Staphylococcus endocarditis: Staphylococcus lugdunensis.. Asian Cardiovasc Thorac Ann19:414–415 [CrossRef][PubMed]
    [Google Scholar]
  43. Stair B., Vessels B., Overholser E., Zogleman B., Wall B. M., Corbett C..( 2012;). Successful daptomycin treatment for Staphylococcus lugdunensis endocarditis. Am J Med Sci344:64–66 [CrossRef][PubMed]
    [Google Scholar]
  44. Sun F., Cho H., Jeong D. W., Li C., He C., Bae T..( 2010;). Aureusimines in Staphylococcus aureus are not involved in virulence. PLoS ONE5:e15703 [CrossRef][PubMed]
    [Google Scholar]
  45. Tse H., Tsoi H. W., Leung S. P., Lau S. K., Woo P. C., Yuen K. Y..( 2010;). Complete genome sequence of Staphylococcus lugdunensis strain HKU09-01. J Bacteriol192:1471–1472 [CrossRef][PubMed]
    [Google Scholar]
  46. Veiga H., Pinho M. G..( 2009;). Inactivation of the SauI type I restriction-modification system is not sufficient to generate Staphylococcus aureus strains capable of efficiently accepting foreign DNA. Appl Environ Microbiol75:3034–3038 [CrossRef][PubMed]
    [Google Scholar]
  47. Weiss W. J., Lenoy E., Murphy T., Tardio L., Burgio P., Projan S. J., Schneewind O., Alksne L..( 2004;). Effect of srtA and srtB gene expression on the virulence of Staphylococcus aureus in animal models of infection. J Antimicrob Chemother53:480–486 [CrossRef][PubMed]
    [Google Scholar]
  48. Xu S. Y., Corvaglia A. R., Chan S. H., Zheng Y., Linder P..( 2011;). A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300. Nucleic Acids Res39:5597–5610 [CrossRef][PubMed]
    [Google Scholar]
  49. Yasui K., Kano Y., Tanaka K., Watanabe K., Shimizu-Kadota M., Yoshikawa H., Suzuki T..( 2009;). Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic Acids Res37:e3 [CrossRef][PubMed]
    [Google Scholar]
  50. Zapotoczna M., Heilbronner S., Speziale P., Foster T. J..( 2012;). Iron-regulated surface determinant (Isd) proteins of Staphylococcus lugdunensis.. J Bacteriol194:6453–6467 [CrossRef][PubMed]
    [Google Scholar]
  51. Zbinden R., Müller F., Brun F., von Graevenitz A..( 1997;). Detection of clumping factor-positive Staphylococcus lugdunensis by Staphaurex Plus®. J Microbiol Methods31:95–98 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070292-0
Loading
/content/journal/micro/10.1099/mic.0.070292-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error