1887

Abstract

Lead (Pb) is an element present in the environment that negatively affects all living organisms. To diminish its high toxicity, micro-organisms have developed several mechanisms that allow them to survive exposure to Pb(II). The main mechanisms of lead resistance involve adsorption by extracellular polysaccharides, cell exclusion, sequestration as insoluble phosphates, and ion efflux to the cell exterior. This review describes the various lead resistance mechanisms, and the regulation of their expression by lead binding regulatory proteins. Special attention is given to the Pbr system from CH34, which involves a unique mechanism combining efflux and lead precipitation.

Funding
This study was supported by the:
  • Ministry of Polish Science and Higher Education (Award N N305 185937)
  • UPGOW project task 55 at the University of Silesia within the European Social Fund
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070284-0
2014-01-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/12.html?itemId=/content/journal/micro/10.1099/mic.0.070284-0&mimeType=html&fmt=ahah

References

  1. Aguilera M., Quesada M. T., Del Aguila V. G., Morillo J. A., Rivadeneyra M. A., Ramos-Cormenzana A., Monteoliva-Sánchez M. ( 2008). Characterisation of Paenibacillus jamilae strains that produce exopolysaccharide during growth on and detoxification of olive mill wastewaters. Bioresour Technol 99:5640–5644 [View Article][PubMed]
    [Google Scholar]
  2. Aickin R. M., Dean A. C. R. ( 1977). Lead accumulation by micro-organisms. Microbios Lett 5:129–133
    [Google Scholar]
  3. Aickin R. M., Dean A. C. R. ( 1979). Lead accumulation by Pseudomonas fluorescens and by Citrobacter sp. Microbios Lett 9:55–66
    [Google Scholar]
  4. Aickin R. M., Dean A. C. R., Cheethama K., Skarnulias A. J. ( 1979). Electron microscope studies on the uptake of lead by a Citrobacter species. Microbios Letters 9:7–15
    [Google Scholar]
  5. Aiking H., Govers H., van’t Riet J. ( 1985). Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl Environ Microbiol 50:1262–1267[PubMed]
    [Google Scholar]
  6. Akmal M., Jianming X. ( 2009). Microbial biomass and bacterial community changes by Pb contamination in acidic soil. J Agric Biol Sci 1:30–37
    [Google Scholar]
  7. al-Aoukaty A., Appanna V. D., Huang J. ( 1991). Exocellular and intracellular accumulation of lead in Pseudomonas fluorescens ATCC 13525 is mediated by the phosphate content of the growth medium. FEMS Microbiol Lett 67:283–290 [View Article][PubMed]
    [Google Scholar]
  8. Amoozegar M. A., Ghazanfari N., Didari M. ( 2012). Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide-producing halophilic bacterium. Prog Biol Sci 2:1–11
    [Google Scholar]
  9. Apell H. J. ( 2004). How do P-type ATPases transport ions. Bioelectrochemistry 63:149–156 [View Article][PubMed]
    [Google Scholar]
  10. Argüello J. M. ( 2003). Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 195:93–108 [View Article][PubMed]
    [Google Scholar]
  11. Arunakumara K. K. I. U., Xuecheng Z. ( 2009). Effects of heavy metals (Pb2+ and Cd2+) on the ultrastructure, growth and pigment contents of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Chin J Oceanology Limnol 27:383–388 [View Article]
    [Google Scholar]
  12. Babich H., Stotzky G. ( 1979). Abiotic factors affecting the toxicity of lead to fungi. Appl Environ Microbiol 38:506–513[PubMed]
    [Google Scholar]
  13. Banci L., Bertini I., Cantini F., Ciofi-Baffoni S., Cavet J. S., Dennison C., Graham A. I., Harvie D. R., Robinson N. J. ( 2007). NMR structural analysis of cadmium sensing by winged helix repressor CmtR. J Biol Chem 282:30181–30188 [View Article][PubMed]
    [Google Scholar]
  14. Beveridge T. J., Fyfe W. S. ( 1985). Metal fixation by bacterial cell walls. Can J Earth Sci 22:1892–1898 [View Article]
    [Google Scholar]
  15. Binet M. R., Poole R. K. ( 2000). Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli. . FEBS Lett 473:67–70 [View Article][PubMed]
    [Google Scholar]
  16. Blindauer C. A. ( 2011). Bacterial metallothioneins: past, present, and questions for the future. J Biol Inorg Chem 16:1011–1024 [View Article][PubMed]
    [Google Scholar]
  17. Borremans B., Hobman J. L., Provoost A., Brown N. L., van Der Lelie D. ( 2001). Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658 [View Article][PubMed]
    [Google Scholar]
  18. Braud A., Geoffroy V., Hoegy F., Mislin G. L. A., Schalk I. J. ( 2010). Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ Microbiol Rep 2:419–425 [View Article][PubMed]
    [Google Scholar]
  19. Brocklehurst K. R., Hobman J. L., Lawley B., Blank L., Marshall S. J., Brown N. L., Morby A. P. ( 1999). ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. . Mol Microbiol 31:893–902 [View Article][PubMed]
    [Google Scholar]
  20. Brown N. L., Stoyanov J. V., Kidd S. P., Hobman J. L. ( 2003). The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163 [View Article][PubMed]
    [Google Scholar]
  21. Bruins M. R., Kapil S., Oehme F. W. ( 2000). Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207 [View Article][PubMed]
    [Google Scholar]
  22. Busenlehner L. S., Giedroc D. P. ( 2006). Kinetics of metal binding by the toxic metal-sensing transcriptional repressor Staphylococcus aureus pI258 CadC. J Inorg Biochem 100:1024–1034 [View Article][PubMed]
    [Google Scholar]
  23. Busenlehner L. S., Pennella M. A., Giedroc D. P. ( 2003). The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143 [View Article][PubMed]
    [Google Scholar]
  24. Bussche J. V., Soares E. V. ( 2011). Lead induces oxidative stress and phenotypic markers of apoptosis in Saccharomyces cerevisiae. . Appl Microbiol Biotechnol 90:679–687 [View Article][PubMed]
    [Google Scholar]
  25. Çabuk A., Akar T., Tunali S., Tabak O. ( 2006). Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb(II). J Hazard Mater 136:317–323 [View Article][PubMed]
    [Google Scholar]
  26. Çabuk A., Akar T., Tunali S., Gedikli S. ( 2007). Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: equilibrium and mechanism analysis. Chem Eng J 131:293–300 [View Article]
    [Google Scholar]
  27. Cavet J. S., Graham A. I., Meng W., Robinson N. J. ( 2003). A cadmium-lead-sensing ArsR-SmtB repressor with novel sensory sites. Complementary metal discrimination by NmtR and CmtR in a common cytosol. J Biol Chem 278:44560–44566 [View Article][PubMed]
    [Google Scholar]
  28. Chakraborty T., Babu P. G., Alam A., Chaudhari A. ( 2008). GFP expressing bacterial biosensor to measure lead contamination in aquatic environment. Curr Sci 94:800–805
    [Google Scholar]
  29. Chatterjee S., Anindita M., Agniswar S., Pranab R. ( 2012). Bioremediation of lead by lead-resistant microorganisms, isolated from industrial sample. Adv Biosci Biotechnol 3:290–295 [View Article]
    [Google Scholar]
  30. Chen P. R., He C. ( 2008). Selective recognition of metal ions by metalloregulatory proteins. Curr Opin Chem Biol 12:214–221 [View Article][PubMed]
    [Google Scholar]
  31. Chen C., Wang J. ( 2007). Response of Saccharomyces cerevisiae to lead ion stress. Appl Microbiol Biotechnol 74:683–687 [View Article][PubMed]
    [Google Scholar]
  32. Chen Y. T., Chang H. Y., Lai Y. C., Pan C. C., Tsai S. F., Peng H. L. ( 2004). Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337:189–198 [View Article][PubMed]
    [Google Scholar]
  33. Chen P., Greenberg B., Taghavi S., Romano C., van der Lelie D., He C. ( 2005). An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew Chem Int Ed Engl 44:2715–2719 [View Article][PubMed]
    [Google Scholar]
  34. Chen P. R., Wasinger E. C., Zhao J., van der Lelie D., Chen L. X., He C. ( 2007). Spectroscopic insights into lead(II) coordination by the selective lead(II)-binding protein PbrR691. J Am Chem Soc 129:12350–12351 [View Article][PubMed]
    [Google Scholar]
  35. Chen B., Jia-nan L., Zheng W., Lei D., Jing-hua F., Juan-juan Q. ( 2011). Remediation of Pb-resistant bacteria to Pb polluted soil. J Environ Protect 2:130–141 [View Article]
    [Google Scholar]
  36. Chiu T. Y., Yang D. M. ( 2012). Intracellular Pb2+ content monitoring using a protein-based Pb2+ indicator. Toxicol Sci 126:436–445 [View Article][PubMed]
    [Google Scholar]
  37. Clipson N., Gleeson D. B. ( 2012). Fungal biogeochemistry: a central role in the environmental fate of lead. Curr Biol 22:R82–R84 [View Article][PubMed]
    [Google Scholar]
  38. Coblenz A., Wolf K. ( 1994). The role of glutathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces pombe. . FEMS Microbiol Rev 14:303–308 [View Article][PubMed]
    [Google Scholar]
  39. Coombs J. M., Barkay T. ( 2005). New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea. Appl Environ Microbiol 71:7083–7091 [View Article][PubMed]
    [Google Scholar]
  40. Corbisier P., van der Lelie D., Borremans B., Provoost A., de Lorenzo V., Brown N. L., Lloyd J. R., Hobman J. L., Csoregi E. & other authors ( 1999). Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244 [View Article]
    [Google Scholar]
  41. Debut A. J., Dumay Q. C., Barabote R. D., Saier M. H. Jr ( 2006). The iron/lead transporter superfamily of Fe/Pb2+ uptake systems. J Mol Microbiol Biotechnol 11:1–9 [View Article][PubMed]
    [Google Scholar]
  42. Donmez G., Aksu Z. ( 1999). The effect of copper (II) ions on the growth and bioaccumulation properties of some yeasts. Process Biochem 35:135–142 [View Article]
    [Google Scholar]
  43. Dopson M., Baker-Austin C., Koppineedi P. R., Bond P. L. ( 2003). Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970 [View Article][PubMed]
    [Google Scholar]
  44. Dutta S. J., Liu J., Hou Z., Mitra B. ( 2006). Conserved aspartic acid 714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue. Biochemistry 45:5923–5931 [View Article][PubMed]
    [Google Scholar]
  45. Dutta S. J., Liu J., Stemmler A. J., Mitra B. ( 2007). Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity. Biochemistry 46:3692–3703 [View Article][PubMed]
    [Google Scholar]
  46. Freire-Nordi C. S., Vieira A. A. H., Nakaie C. R., Nascimento O. R. ( 2005). Effect of polysaccharide capsule of the microalgae Staurastrum iversenii var. americanum on diffusion of charged and uncharged molecules, using EPR technique. Braz J Phys 36:75–82
    [Google Scholar]
  47. Gabr R. M., Hassan S. H. A., Shoreit A. A. M. ( 2008). Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int Biodeterior Biodegradation 62:195–203 [View Article]
    [Google Scholar]
  48. Gadd G. M. ( 2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643 [View Article][PubMed]
    [Google Scholar]
  49. Gao Y., Miao C., Wang Y., Xia J., Zhou P. ( 2012). Metal-resistant microorganisms and metal chelators synergistically enhance the phytoremediation efficiency of Solanum nigrum L. in Cd- and Pb-contaminated soil. Environ Technol 33:1383–1389 [View Article][PubMed]
    [Google Scholar]
  50. Gerba C. P. ( 1996). Principles of toxicology.. Environmental and Pollution Science322–44 Pepper I. L. et al. San Diego: Academic Press;
    [Google Scholar]
  51. Gharieb M. M., Gadd G. M. ( 2004). Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae . Biometals 17:183–188 [View Article][PubMed]
    [Google Scholar]
  52. Govarthanan M., Lee K. J., Cho M., Kim J. S., Kamala-Kannan S., Oh B. T. ( 2013). Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere 90:2267–2272 [View Article][PubMed]
    [Google Scholar]
  53. Grass G., Wong M. D., Rosen B. P., Smith R. L., Rensing C. ( 2002). ZupT is a Zn(II) uptake system in Escherichia coli. . J Bacteriol 184:864–866 [View Article][PubMed]
    [Google Scholar]
  54. Grosse C., Friedrich S., Nies D. H. ( 2007). Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 12:227–240 [View Article][PubMed]
    [Google Scholar]
  55. Guibaud G., Tixier N., Bouju A., Baudu M. ( 2003). Relation between extracellular polymers’ composition and its ability to complex Cd, Cu and Pb. Chemosphere 52:1701–1710 [View Article][PubMed]
    [Google Scholar]
  56. Guo H., Luo S., Chen L., Xiao X., Xi Q., Wei W., Zeng G., Liu C., Wan Y. & other authors ( 2010). Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol 101:8599–8605 [View Article][PubMed]
    [Google Scholar]
  57. Haritha A., Sagar K. P., Tiwari A., Kiranmayi P., Rodrigue A., Mohan P. M., Singh S. S. ( 2009). MrdH, a novel metal resistance determinant of Pseudomonas putida KT2440, is flanked by metal-inducible mobile genetic elements. J Bacteriol 191:5976–5987 [View Article][PubMed]
    [Google Scholar]
  58. Hasnain S., Yasmin S., Yasmin A. ( 1993). The effects of lead-resistant pseudomonads on the growth of Triticum aestivum seedlings under lead stress. Environ Pollut 81:179–184 [View Article][PubMed]
    [Google Scholar]
  59. Hobman J. L., Julian D. J., Brown N. L. ( 2012). Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34. BMC Microbiol 12:109 [View Article][PubMed]
    [Google Scholar]
  60. Hou Z. J., Narindrasorasak S., Bhushan B., Sarkar B., Mitra B. ( 2001). Functional analysis of chimeric proteins of the Wilson Cu(I)-ATPase (ATP7B) and ZntA, a Pb(II)/Zn(II)/Cd(II)-ATPase from Escherichia coli. . J Biol Chem 276:40858–40863 [View Article][PubMed]
    [Google Scholar]
  61. Huckle J. W., Morby A. P., Turner J. S., Robinson N. J. ( 1993). Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7:177–187 [View Article][PubMed]
    [Google Scholar]
  62. Hughes M. N., Poole R. K. ( 1989). Metals and Micro-organisms277 London, UK: Chapman & Hall;
    [Google Scholar]
  63. Hynninen A. (2010).Zinc, cadmium and lead resistance mechanisms in bacteria and their contribution to biosensing
  64. Hynninen A., Touzé T., Pitkänen L., Mengin-Lecreulx D., Virta M. ( 2009). An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol 74:384–394 [View Article][PubMed]
    [Google Scholar]
  65. Janssen P. J., Van Houdt R., Moors H., Monsieurs P., Morin N., Michaux A., Benotmane M. A., Leys N., Vallaeys T. & other authors ( 2010). The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS ONE 5:e10433 [View Article][PubMed]
    [Google Scholar]
  66. Karnachuk O. V., Kurochkina S. Y., Tuovinen O. H. ( 2002). Growth of sulfate-reducing bacteria with solid-phase electron acceptors. Appl Microbiol Biotechnol 58:482–486 [View Article][PubMed]
    [Google Scholar]
  67. Kotuby-Amacher J., Gambrell R. P., Amacher M. C. ( 1992). The distribution and environmental chemistry of lead in soil at an abandoned battery reclamation site. Engineering Aspects of Metal–Waste Management1–24 Iskander I. K., Selim H. M. Boca Raton, FL: Lewis Publishers;
    [Google Scholar]
  68. Kumar M., Upreti R. K. ( 2000). Impact of lead stress and adaptation in Escherichia coli. . Ecotoxicol Environ Saf 47:246–252 [View Article][PubMed]
    [Google Scholar]
  69. Laddaga R. A., Silver S. ( 1985). Cadmium uptake in Escherichia coli K-12. J Bacteriol 162:1100–1105[PubMed]
    [Google Scholar]
  70. Laddaga R. A., Bessen R., Silver S. ( 1985). Cadmium resistant mutant of Bacillus subtilis 168 with reduced cadmium transport. J Bacteriol 262:1106–1110
    [Google Scholar]
  71. Lee L. J., Barrett J. A., Poole R. K. ( 2005). Genome-wide transcriptional response of chemostat-cultured Escherichia coli to zinc. J Bacteriol 187:1124–1134 [View Article][PubMed]
    [Google Scholar]
  72. Leedjärv A., Ivask A., Virta M. ( 2008). Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. J Bacteriol 190:2680–2689 [View Article][PubMed]
    [Google Scholar]
  73. Leonhartsberger S., Huber A., Lottspeich F., Böck A. ( 2001). The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J Mol Biol 307:93–105 [View Article][PubMed]
    [Google Scholar]
  74. Levinson H. S., Mahler I. ( 1998). Phosphatase activity and lead resistance in Citrobacter freundii and Staphylococcus aureus. . FEMS Microbiol Lett 161:135–138 [View Article][PubMed]
    [Google Scholar]
  75. Levinson H. S., Mahler I., Blackwelder P., Hood T. ( 1996). Lead resistance and sensitivity in Staphylococcus aureus. . FEMS Microbiol Lett 145:421–425 [View Article][PubMed]
    [Google Scholar]
  76. Li Z. S., Lu Y. P., Zhen R. G., Szczypka M., Thiele D. J., Rea P. A. ( 1997). A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci U S A 94:42–47 [View Article][PubMed]
    [Google Scholar]
  77. Liu T., Golden J. W., Giedroc D. P. ( 2005). A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator. Biochemistry 44:8673–8683 [View Article][PubMed]
    [Google Scholar]
  78. Liu J., Dutta S. J., Stemmler A. J., Mitra B. ( 2006). Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity. Biochemistry 45:763–772 [View Article][PubMed]
    [Google Scholar]
  79. Loaëc M., Olier R., Guezennec J. ( 1997). Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Water Res 31:1171–1179 [View Article]
    [Google Scholar]
  80. Makui H., Roig E., Cole S. T., Helmann J. D., Gros P., Cellier M. F. ( 2000). Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 35:1065–1078 [View Article][PubMed]
    [Google Scholar]
  81. Mayer R. A., Godwin H. A. ( 2006). Preparation of media and buffers with soluble lead. Anal Biochem 356:142–144 [View Article][PubMed]
    [Google Scholar]
  82. Mire C. E., Tourjee J. A., O’Brien W. F., Ramanujachary K. V., Hecht G. B. ( 2004). Lead precipitation by Vibrio harveyi: evidence for novel quorum-sensing interactions. Appl Environ Microbiol 70:855–864 [View Article][PubMed]
    [Google Scholar]
  83. Mitra B., Sharma R. ( 2001). The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function. Biochemistry 40:7694–7699 [View Article][PubMed]
    [Google Scholar]
  84. Monchy S., Benotmane M. A., Janssen P., Vallaeys T., Taghavi S., van der Lelie D., Mergeay M. ( 2007). Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425 [View Article][PubMed]
    [Google Scholar]
  85. Monsieurs P., Moors H., Van Houdt R., Janssen P. J., Janssen A., Coninx I., Mergeay M., Leys N. ( 2011). Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals 24:1133–1151 [View Article][PubMed]
    [Google Scholar]
  86. Morillo J. A., Aguilera M., Ramos-Cormenzana A., Monteoliva-Sánchez M. ( 2006). Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate. Curr Microbiol 53:189–193 [View Article][PubMed]
    [Google Scholar]
  87. Murthy S., Geetha B., Sarangi S. K. ( 2011). Effect of lead on metallothionein concentration in lead-resistant bacteria Bacillus cereus isolated from industrial effluent. Afr J Biotechnol 10:15966–15972 [View Article]
    [Google Scholar]
  88. Naik M. M., Dubey S. K. ( 2011). Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr Microbiol 62:409–414 [View Article][PubMed]
    [Google Scholar]
  89. Naik M. M., Pandey A., Dubey S. K. ( 2012). Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicol Environ Saf 79:129–133 [View Article][PubMed]
    [Google Scholar]
  90. Nies D. H. ( 1992). Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27:17–28 [View Article][PubMed]
    [Google Scholar]
  91. Nies D. H. ( 2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339 [View Article][PubMed]
    [Google Scholar]
  92. Noll M., Petrukhin K., Lutsenko S. ( 1998). Identification of a novel transcription regulator from Proteus mirabilis, PMTR, revealed a possible role of YJAI protein in balancing zinc in Escherichia coli. . J Biol Chem 273:21393–21401 [View Article][PubMed]
    [Google Scholar]
  93. Pal A., Paul A. K. ( 2008). Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64 [View Article][PubMed]
    [Google Scholar]
  94. Paperi R., Micheletti E., De Philippis R. ( 2006). Optimization of copper sorbing-desorbing cycles with confined cultures of the exopolysaccharide-producing cyanobacterium Cyanospira capsulata. . J Appl Microbiol 101:1351–1356 [View Article][PubMed]
    [Google Scholar]
  95. Park J., Bolan N., Megharaj M., Naidu R. ( 2010). Isolation of phosphate-solubilizing bacteria and characterization of their effects on lead immobilization. Pedologist 53:67–75
    [Google Scholar]
  96. Park J. H., Bolan N., Meghraj M., Naidu R., Chung J. W. ( 2011). Bacterial-assisted immobilization of lead in soils: implications for remediation. Pedologist 54:162–174
    [Google Scholar]
  97. Pennella M. A., Giedroc D. P. ( 2005). Structural determinants of metal selectivity in prokaryotic metal-responsive transcriptional regulators. Biometals 8:413–428 [View Article]
    [Google Scholar]
  98. Perdrial N., Liewig N., Delphin J. E., Elsass F. ( 2008). TEM evidence for intracellular accumulation of lead by bacteria in subsurface environments. Chem Geol 253:196–204 [View Article]
    [Google Scholar]
  99. Pereira S., Micheletti E., Zille A., Santos A., Moradas-Ferreira P., Tamagnini P., De Philippis R. ( 2011). Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell. Microbiology 157:451–458 [View Article][PubMed]
    [Google Scholar]
  100. Perez M. P. J. A., García-Ribera R., Quesada T., Aguilera M., Ramos-Cormenzana A., Monteoliva-Sánchez M. ( 2008). Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. . World J Microbiol Biotechnol 24:2699–2704 [View Article]
    [Google Scholar]
  101. Permina E. A., Kazakov A. E., Kalinina O. V., Gelfand M. S. ( 2006). Comparative genomics of regulation of heavy metal resistance in Eubacteria. . BMC Microbiol 6:49–60 [View Article][PubMed]
    [Google Scholar]
  102. Pongratz R., Heumann K. G. ( 1999). Production of methylated mercury, lead and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere 39:89–102 [View Article]
    [Google Scholar]
  103. Prévéral S., Ansoborlo E., Mari S., Vavasseur A., Forestier C. ( 2006). Metal(loid)s and radionuclides cytotoxicity in Saccharomyces cerevisiae. Role of YCF1, glutathione and effect of buthionine sulfoximine. Biochimie 88:1651–1663 [View Article][PubMed]
    [Google Scholar]
  104. Raimunda D., Subramanian P., Stemmler T., Argüello J. M. ( 2012). A tetrahedral coordination of zinc during transmembrane transport by P-type Zn2+-ATPases. Biochim Biophys Acta 1818:1374–1377 [View Article][PubMed]
    [Google Scholar]
  105. Reisinger K., Stoeppler M., Nürnberg H. W. ( 1981). Evidence for the absence of biological methylation of lead in the environment. Nature 291:228–230 [View Article]
    [Google Scholar]
  106. Rensing C., Mitra B., Rosen B. P. ( 1997). The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A 94:14326–14331 [View Article][PubMed]
    [Google Scholar]
  107. Rensing C., Sun Y., Mitra B., Rosen B. P. ( 1998). Pb(II)-translocating P-type ATPases. J Biol Chem 273:32614–32617 [View Article][PubMed]
    [Google Scholar]
  108. Rensing C., Ghosh M., Rosen B. P. ( 1999). Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897[PubMed]
    [Google Scholar]
  109. Rhee Y. J., Hillier S., Gadd G. M. ( 2012). Lead transformation to pyromorphite by fungi. Curr Biol 22:237–241 [View Article][PubMed]
    [Google Scholar]
  110. Rifaat H. M., Mahrous K. F., Khalil W. K. B. ( 2009). Effect of heavy metals upon metallothioneins in some Streptomyces species isolated from Egyptian soil. J Appl Sci Environ Sanit 4:197–206
    [Google Scholar]
  111. Roane T. M. ( 1999). Lead resistance in two bacterial isolates from heavy metal contaminated soils. Microb Ecol 37:218–224 [View Article][PubMed]
    [Google Scholar]
  112. Roane T. M., Kellogg S. T. ( 1996). Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol 42:593–603 [View Article][PubMed]
    [Google Scholar]
  113. Sag Y., Özer D., Kutsal T. ( 1995). A comparative study of the biosorption of lead(II) ions to Z. ramigera and R. arrhizus. . Process Biochem 30:169–174 [CrossRef]
    [Google Scholar]
  114. Saha R., Saha N., Donofrio R. S., Bestervelt L. L. ( 2012). Microbial siderophores: a mini review. J Basic Microbiol 52:1–15[PubMed] [CrossRef]
    [Google Scholar]
  115. Sakamoto F., Ohnuki T., Fujii T., Iefuji H. ( 2010). Response of Saccharomyces cerevisiae to heavy element stress: lead vs. uranium. Geomicrobiol J 27:240–244 [View Article]
    [Google Scholar]
  116. Salehizadeh H., Shojaosadati S. A. ( 2003). Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. . Water Res 37:4231–4235 [View Article][PubMed]
    [Google Scholar]
  117. Sani R. K., Geesey G., Peyton B. ( 2001). Assessment of lead toxicity to Desulfovibrio desulfuricans G20: influence of components of Lactate C medium. Adv Environ Res 5:269–276 [View Article]
    [Google Scholar]
  118. Sayer J. A., Cotter-Howells J. D., Watson C., Hillier S., Gadd G. M. ( 1999). Lead mineral transformation by fungi. Curr Biol 9:691–694 [View Article][PubMed]
    [Google Scholar]
  119. Schalk I. J., Hannauer M., Braud A. ( 2011). New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854 [View Article][PubMed]
    [Google Scholar]
  120. Scherer J., Nies D. H. ( 2009). CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 73:601–621 [View Article][PubMed]
    [Google Scholar]
  121. Schwab A. P., He Y. H., Banks M. K. ( 2005). The influence of organic ligands on the retention of lead in soil. Chemosphere 61:856–866 [View Article][PubMed]
    [Google Scholar]
  122. Shen L., Xia J. L., He H., Nie Z. Y. ( 2008). Comparative study on biosorption of Pb(II) and Cr(VI) by Synechococcus sp. Trans Nonferr Metal Soc 18:1336–1342 [View Article]
    [Google Scholar]
  123. Sheng X.-F., Xia J.-J., Jiang C. Y., He L. Y., Qian M. ( 2008). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170 [View Article][PubMed]
    [Google Scholar]
  124. Shin M. N., Shim J., You Y., Myung H., Bang K. S., Cho M., Kamala-Kannan S., Oh B. T. ( 2012). Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. . J Hazard Mater 199–200:314–320 [View Article][PubMed]
    [Google Scholar]
  125. Shiraishi E., Inouhe M., Joho M., Tohoyama H. ( 2000). The cadmium-resistant gene, CAD2, which is a mutated putative copper-transporter gene (PCA1), controls the intracellular cadmium-level in the yeast S. cerevisiae . Curr Genet 37:79–86 [View Article][PubMed]
    [Google Scholar]
  126. Siegel F. R. ( 2002). Environmental Geochemistry of Potentially Toxic Metals218 Berlin: Springer-Verlag; [View Article]
    [Google Scholar]
  127. Silver S., Phung T. ( 2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605 [View Article][PubMed]
    [Google Scholar]
  128. Silverberg B. A., Wong P. T., Chau Y. K. ( 1976). Ultrastructural examination of Aeromonas cultured in the presence of organic lead. Appl Environ Microbiol 32:723–725[PubMed]
    [Google Scholar]
  129. Silverberg B. A., Wong P. T. S., Chau Y. K. ( 1977). Effect of tetramethyl lead on freshwater green algae. Arch Environ Contam Toxicol 5:305–313 [View Article][PubMed]
    [Google Scholar]
  130. Singh S. P., Tack F. M. G., Verioo M. G. ( 1996). Extractability and bioavailability of heavy metals in surface soils derived from dredged sediments. Chem Spec Bioavail 8:105–110
    [Google Scholar]
  131. Smeaton C. M., Fryer B. J., Weisener C. G. ( 2009). Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite. Environ Sci Technol 43:8086–8091 [View Article][PubMed]
    [Google Scholar]
  132. So N. W., Rho J. Y., Lee S. Y., Hancock I. C., Kim J. H. ( 2001). A lead-absorbing protein with superoxide dismutase activity from Streptomyces subrutilus. . FEMS Microbiol Lett 194:93–98 [View Article][PubMed]
    [Google Scholar]
  133. Soares E. V., Duarte A. P., Boaventura R. A., Soares H. M. ( 2002). Viability and release of complexing compounds during accumulation of heavy metals by a brewer’s yeast. Appl Microbiol Biotechnol 58:836–841 [View Article][PubMed]
    [Google Scholar]
  134. Soares E. V., Hebbelinck K., Soares H. M. ( 2003). Toxic effects caused by heavy metals in the yeast Saccharomyces cerevisiae: a comparative study. Can J Microbiol 49:336–343 [View Article][PubMed]
    [Google Scholar]
  135. Song W. Y., Sohn E. J., Martinoia E., Lee Y. J., Yang Y. Y., Jasinski M., Forestier C., Hwang I., Lee Y. ( 2003). Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919 [View Article][PubMed]
    [Google Scholar]
  136. Van der Heggen M., Martins S., Flores G., Soares E. V. ( 2010). Lead toxicity in Saccharomyces cerevisiae. . Appl Microbiol Biotechnol 88:1355–1361 [View Article][PubMed]
    [Google Scholar]
  137. Sparks D. L. ( 2005). Toxic metals in the environment: the role of surfaces. Elements 1:193–197 [View Article]
    [Google Scholar]
  138. Spiro T. G., Stigliani W. M. ( 2002). Chemistry of the Environment356 Upper Saddle River, NJ: Prentice-Hall;
    [Google Scholar]
  139. Suh J. H., Kim D. S., Yun J. W., Song S. K. ( 1998). Process of Pb2+ accumulation in Saccharomyces cerevisiae. . Biotechnol Lett 20:153–156 [View Article]
    [Google Scholar]
  140. Suh J. H., Yun J. W., Kim D. S. ( 1999a). Cation (K+, Mg2+, Ca2+) exchange in Pb2+ accumulation by Saccharomyces cerevisiae. . Bioprocess Eng 21:383–387 [View Article]
    [Google Scholar]
  141. Suh J. H., Yun J. W., Kim D. S. ( 1999b). Effect of extracellular polymeric substances (EPS) on Pb2+ accumulation by Aureobasidium pullulans. . Bioprocess Biosyst Eng 21:1–4
    [Google Scholar]
  142. Suh J. H., Kim D. S., Song S. K. ( 2001). Inhibition effect of initial Pb2+ concentration on Pb2+ accumulation by Saccharomyces cerevisiae and Aureobasidium pullulans. . Bioresour Technol 79:99–102 [View Article][PubMed]
    [Google Scholar]
  143. Sun F., Shao Z. ( 2007). Biosorption and bioaccumulation of lead by Penicillium sp. Psf-2 isolated from the deep sea sediment of the Pacific Ocean. Extremophiles 11:853–858 [View Article][PubMed]
    [Google Scholar]
  144. Sun Y., Wong M. D., Rosen B. P. ( 2001). Role of cysteinyl residues in sensing Pb(II), Cd(II), and Zn(II) by the plasmid pI258 CadC repressor. J Biol Chem 276:14955–14960 [View Article][PubMed]
    [Google Scholar]
  145. Szczypka M. S., Wemmie J. A., Moye-Rowley W. S., Thiele D. J. ( 1994). A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem 269:22853–22857[PubMed]
    [Google Scholar]
  146. Taboski M. A. S., Rand T. G., Piórko A. ( 2005). Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica. . FEMS Microbiol Ecol 53:445–453 [View Article][PubMed]
    [Google Scholar]
  147. Taghavi S., Lesaulnier C., Monchy S., Wattiez R., Mergeay M., van der Lelie D. ( 2009). Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie van Leeuwenhoek 96:171–182 [View Article][PubMed]
    [Google Scholar]
  148. Templeton A. S., Trainor T. P., Spormann A. M., Newville M., Sutton S. R., Dohnalkova A., Gorby Y., Brown G. E. Jr ( 2003). Sorption versus biomineralization of Pb(II) within Burkholderia cepacia biofilms. Environ Sci Technol 37:300–307 [View Article][PubMed]
    [Google Scholar]
  149. Thayer J. S. ( 2002). Biological methylation of less-studied elements. Appl Organomet Chem 16:677–691 [View Article]
    [Google Scholar]
  150. Thayer J. S., Brinckman F. ( 1982). The biological methylation of metals and metalloids. Adv Organomet Chem 20:313–356 [View Article]
    [Google Scholar]
  151. Thelwell C., Robinson N. J., Turner-Cavet J. S. ( 1998). An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc Natl Acad Sci U S A 95:10728–10733 [View Article][PubMed]
    [Google Scholar]
  152. Tornabene T. G., Edwards H. W. ( 1972). Microbial uptake of lead. Science 176:1334–1335 [View Article][PubMed]
    [Google Scholar]
  153. Tornabene T. G., Peterson S. L. ( 1975). Interaction of lead and bacterial lipids. Appl Microbiol 29:680–684[PubMed]
    [Google Scholar]
  154. Trajanovska S., Britz M. L., Bhave M. ( 1997). Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Biodegradation 8:113–124 [View Article][PubMed]
    [Google Scholar]
  155. Tripathi M., Munot H. P., Shouche Y., Meyer J. M., Goel R. ( 2005). Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237 [View Article][PubMed]
    [Google Scholar]
  156. Turner J. S., Glands P. D., Samson A. C. R., Robinson N. J. ( 1996). Zn2+-sensing by the cyanobacterial metallothionein repressor SmtB: different motifs mediate metal-induced protein-DNA dissociation. Nucleic Acids Res 24:3714–3721 [View Article][PubMed]
    [Google Scholar]
  157. Tynecka Z., Gos Z., Zajac J. ( 1981). Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus. . J Bacteriol 147:305–312[PubMed]
    [Google Scholar]
  158. Vallee B. L., Ulmer D. D. ( 1972). Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41:91–128 [View Article][PubMed]
    [Google Scholar]
  159. VanZile M. L., Chen X., Giedroc D. P. ( 2002). Allosteric negative regulation of smt O/P binding of the zinc sensor, SmtB, by metal ions: a coupled equilibrium analysis. Biochemistry 41:9776–9786 [View Article][PubMed]
    [Google Scholar]
  160. Walton A., Ebdon L., Millward G. ( 1988). Methylation of inorganic lead by Tamyar Estuary (UK) sediments. Appl Organomet Chem 2:87–93 [View Article]
    [Google Scholar]
  161. Wang Y., Kendall J., Cavet J. S., Giedroc D. P. ( 2010). Elucidation of the functional metal binding profile of a Cd/Pb sensor CmtR from Streptomyces coelicolor. . Biochemistry 49:6617–6626 [View Article][PubMed]
    [Google Scholar]
  162. Wilson C., Brigmon R. L., Knox A., Seaman J., Smith G. ( 2006). Effects of microbial and phosphate amendments on the bioavailability of lead (Pb) in shooting range soil. Bull Environ Contam Toxicol 76:392–399 [View Article][PubMed]
    [Google Scholar]
  163. Wong P. T. S., Chau Y. K., Luxon P. L. ( 1975). Methylation of lead in the environment. Nature 253:263–264 [View Article][PubMed]
    [Google Scholar]
  164. Wu S. C., Luo Y. M., Cheung K. C., Wong M. H. ( 2006). Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: a laboratory study. Environ Pollut 144:765–773 [View Article][PubMed]
    [Google Scholar]
  165. Yokel J., Delistraty D. A. ( 2003). Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the Hanford site (USA). Environ Toxicol 18:104–114 [View Article][PubMed]
    [Google Scholar]
  166. Yoon K. P., Misra T. K., Silver S. ( 1991). Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol 173:7643–7649[PubMed]
    [Google Scholar]
  167. Yuan X. F., Tang C. C. ( 1999). DNA damage and repair in yeast (Saccharomyces cerevisiae) cells exposed to lead. J Environ Sci Health A 34:1117–1128 [View Article]
    [Google Scholar]
  168. Zanardini E., Andreoni V., Borina S., Cappitellia F., Daffonchio D., Talottaa P., Sorlinia C., Ranallib G., Brunic S., Cariatic F. ( 1997). Lead-resistant microorganisms from red stains of marble of the Certosa of Pavia, Italy and use of nucleic acid-based techniques for their detection. Int Biodeter Biodegr 40:171–182 [View Article]
    [Google Scholar]
  169. Zheng C., Li Y., Nie L., Qian L., Cai L., Liu J. ( 2012). Transcriptional and functional studies of a Cd(II)/Pb(II)-responsive transcriptional regulator(CmtR) from Acidithiobacillus ferrooxidans ATCC 23270. Curr Microbiol 65:117–121 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070284-0
Loading
/content/journal/micro/10.1099/mic.0.070284-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error