1887

Abstract

Lead (Pb) is an element present in the environment that negatively affects all living organisms. To diminish its high toxicity, micro-organisms have developed several mechanisms that allow them to survive exposure to Pb(II). The main mechanisms of lead resistance involve adsorption by extracellular polysaccharides, cell exclusion, sequestration as insoluble phosphates, and ion efflux to the cell exterior. This review describes the various lead resistance mechanisms, and the regulation of their expression by lead binding regulatory proteins. Special attention is given to the Pbr system from CH34, which involves a unique mechanism combining efflux and lead precipitation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070284-0
2014-01-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/12.html?itemId=/content/journal/micro/10.1099/mic.0.070284-0&mimeType=html&fmt=ahah

References

  1. Aguilera M., Quesada M. T., Del Aguila V. G., Morillo J. A., Rivadeneyra M. A., Ramos-Cormenzana A., Monteoliva-Sánchez M.. ( 2008;). Characterisation of Paenibacillus jamilae strains that produce exopolysaccharide during growth on and detoxification of olive mill wastewaters. Bioresour Technol99:5640–5644 [CrossRef][PubMed]
    [Google Scholar]
  2. Aickin R. M., Dean A. C. R.. ( 1977;). Lead accumulation by micro-organisms. Microbios Lett5:129–133
    [Google Scholar]
  3. Aickin R. M., Dean A. C. R.. ( 1979;). Lead accumulation by Pseudomonas fluorescens and by Citrobacter sp. Microbios Lett9:55–66
    [Google Scholar]
  4. Aickin R. M., Dean A. C. R., Cheethama K., Skarnulias A. J.. ( 1979;). Electron microscope studies on the uptake of lead by a Citrobacter species. Microbios Letters9:7–15
    [Google Scholar]
  5. Aiking H., Govers H., van’t Riet J.. ( 1985;). Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl Environ Microbiol50:1262–1267[PubMed]
    [Google Scholar]
  6. Akmal M., Jianming X.. ( 2009;). Microbial biomass and bacterial community changes by Pb contamination in acidic soil. J Agric Biol Sci1:30–37
    [Google Scholar]
  7. al-Aoukaty A., Appanna V. D., Huang J.. ( 1991;). Exocellular and intracellular accumulation of lead in Pseudomonas fluorescens ATCC 13525 is mediated by the phosphate content of the growth medium. FEMS Microbiol Lett67:283–290 [CrossRef][PubMed]
    [Google Scholar]
  8. Amoozegar M. A., Ghazanfari N., Didari M.. ( 2012;). Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide-producing halophilic bacterium. Prog Biol Sci2:1–11
    [Google Scholar]
  9. Apell H. J.. ( 2004;). How do P-type ATPases transport ions. Bioelectrochemistry63:149–156 [CrossRef][PubMed]
    [Google Scholar]
  10. Argüello J. M.. ( 2003;). Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol195:93–108 [CrossRef][PubMed]
    [Google Scholar]
  11. Arunakumara K. K. I. U., Xuecheng Z.. ( 2009;). Effects of heavy metals (Pb2+ and Cd2+) on the ultrastructure, growth and pigment contents of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Chin J Oceanology Limnol27:383–388 [CrossRef]
    [Google Scholar]
  12. Babich H., Stotzky G.. ( 1979;). Abiotic factors affecting the toxicity of lead to fungi. Appl Environ Microbiol38:506–513[PubMed]
    [Google Scholar]
  13. Banci L., Bertini I., Cantini F., Ciofi-Baffoni S., Cavet J. S., Dennison C., Graham A. I., Harvie D. R., Robinson N. J.. ( 2007;). NMR structural analysis of cadmium sensing by winged helix repressor CmtR. J Biol Chem282:30181–30188 [CrossRef][PubMed]
    [Google Scholar]
  14. Beveridge T. J., Fyfe W. S.. ( 1985;). Metal fixation by bacterial cell walls. Can J Earth Sci22:1892–1898 [CrossRef]
    [Google Scholar]
  15. Binet M. R., Poole R. K.. ( 2000;). Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli. . FEBS Lett473:67–70 [CrossRef][PubMed]
    [Google Scholar]
  16. Blindauer C. A.. ( 2011;). Bacterial metallothioneins: past, present, and questions for the future. J Biol Inorg Chem16:1011–1024 [CrossRef][PubMed]
    [Google Scholar]
  17. Borremans B., Hobman J. L., Provoost A., Brown N. L., van Der Lelie D.. ( 2001;). Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol183:5651–5658 [CrossRef][PubMed]
    [Google Scholar]
  18. Braud A., Geoffroy V., Hoegy F., Mislin G. L. A., Schalk I. J.. ( 2010;). Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ Microbiol Rep2:419–425 [CrossRef][PubMed]
    [Google Scholar]
  19. Brocklehurst K. R., Hobman J. L., Lawley B., Blank L., Marshall S. J., Brown N. L., Morby A. P.. ( 1999;). ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. . Mol Microbiol31:893–902 [CrossRef][PubMed]
    [Google Scholar]
  20. Brown N. L., Stoyanov J. V., Kidd S. P., Hobman J. L.. ( 2003;). The MerR family of transcriptional regulators. FEMS Microbiol Rev27:145–163 [CrossRef][PubMed]
    [Google Scholar]
  21. Bruins M. R., Kapil S., Oehme F. W.. ( 2000;). Microbial resistance to metals in the environment. Ecotoxicol Environ Saf45:198–207 [CrossRef][PubMed]
    [Google Scholar]
  22. Busenlehner L. S., Giedroc D. P.. ( 2006;). Kinetics of metal binding by the toxic metal-sensing transcriptional repressor Staphylococcus aureus pI258 CadC. J Inorg Biochem100:1024–1034 [CrossRef][PubMed]
    [Google Scholar]
  23. Busenlehner L. S., Pennella M. A., Giedroc D. P.. ( 2003;). The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev27:131–143 [CrossRef][PubMed]
    [Google Scholar]
  24. Bussche J. V., Soares E. V.. ( 2011;). Lead induces oxidative stress and phenotypic markers of apoptosis in Saccharomyces cerevisiae. . Appl Microbiol Biotechnol90:679–687 [CrossRef][PubMed]
    [Google Scholar]
  25. Çabuk A., Akar T., Tunali S., Tabak O.. ( 2006;). Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb(II). J Hazard Mater136:317–323 [CrossRef][PubMed]
    [Google Scholar]
  26. Çabuk A., Akar T., Tunali S., Gedikli S.. ( 2007;). Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: equilibrium and mechanism analysis. Chem Eng J131:293–300 [CrossRef]
    [Google Scholar]
  27. Cavet J. S., Graham A. I., Meng W., Robinson N. J.. ( 2003;). A cadmium-lead-sensing ArsR-SmtB repressor with novel sensory sites. Complementary metal discrimination by NmtR and CmtR in a common cytosol. J Biol Chem278:44560–44566 [CrossRef][PubMed]
    [Google Scholar]
  28. Chakraborty T., Babu P. G., Alam A., Chaudhari A.. ( 2008;). GFP expressing bacterial biosensor to measure lead contamination in aquatic environment. Curr Sci94:800–805
    [Google Scholar]
  29. Chatterjee S., Anindita M., Agniswar S., Pranab R.. ( 2012;). Bioremediation of lead by lead-resistant microorganisms, isolated from industrial sample. Adv Biosci Biotechnol3:290–295 [CrossRef]
    [Google Scholar]
  30. Chen P. R., He C.. ( 2008;). Selective recognition of metal ions by metalloregulatory proteins. Curr Opin Chem Biol12:214–221 [CrossRef][PubMed]
    [Google Scholar]
  31. Chen C., Wang J.. ( 2007;). Response of Saccharomyces cerevisiae to lead ion stress. Appl Microbiol Biotechnol74:683–687 [CrossRef][PubMed]
    [Google Scholar]
  32. Chen Y. T., Chang H. Y., Lai Y. C., Pan C. C., Tsai S. F., Peng H. L.. ( 2004;). Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene337:189–198 [CrossRef][PubMed]
    [Google Scholar]
  33. Chen P., Greenberg B., Taghavi S., Romano C., van der Lelie D., He C.. ( 2005;). An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew Chem Int Ed Engl44:2715–2719 [CrossRef][PubMed]
    [Google Scholar]
  34. Chen P. R., Wasinger E. C., Zhao J., van der Lelie D., Chen L. X., He C.. ( 2007;). Spectroscopic insights into lead(II) coordination by the selective lead(II)-binding protein PbrR691. J Am Chem Soc129:12350–12351 [CrossRef][PubMed]
    [Google Scholar]
  35. Chen B., Jia-nan L., Zheng W., Lei D., Jing-hua F., Juan-juan Q.. ( 2011;). Remediation of Pb-resistant bacteria to Pb polluted soil. J Environ Protect2:130–141 [CrossRef]
    [Google Scholar]
  36. Chiu T. Y., Yang D. M.. ( 2012;). Intracellular Pb2+ content monitoring using a protein-based Pb2+ indicator. Toxicol Sci126:436–445 [CrossRef][PubMed]
    [Google Scholar]
  37. Clipson N., Gleeson D. B.. ( 2012;). Fungal biogeochemistry: a central role in the environmental fate of lead. Curr Biol22:R82–R84 [CrossRef][PubMed]
    [Google Scholar]
  38. Coblenz A., Wolf K.. ( 1994;). The role of glutathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces pombe. . FEMS Microbiol Rev14:303–308 [CrossRef][PubMed]
    [Google Scholar]
  39. Coombs J. M., Barkay T.. ( 2005;). New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea. Appl Environ Microbiol71:7083–7091 [CrossRef][PubMed]
    [Google Scholar]
  40. Corbisier P., van der Lelie D., Borremans B., Provoost A., de Lorenzo V., Brown N. L., Lloyd J. R., Hobman J. L., Csoregi E.. & other authors ( 1999;). Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta387:235–244 [CrossRef]
    [Google Scholar]
  41. Debut A. J., Dumay Q. C., Barabote R. D., Saier M. H. Jr. ( 2006;). The iron/lead transporter superfamily of Fe/Pb2+ uptake systems. J Mol Microbiol Biotechnol11:1–9 [CrossRef][PubMed]
    [Google Scholar]
  42. Donmez G., Aksu Z.. ( 1999;). The effect of copper (II) ions on the growth and bioaccumulation properties of some yeasts. Process Biochem35:135–142 [CrossRef]
    [Google Scholar]
  43. Dopson M., Baker-Austin C., Koppineedi P. R., Bond P. L.. ( 2003;). Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology149:1959–1970 [CrossRef][PubMed]
    [Google Scholar]
  44. Dutta S. J., Liu J., Hou Z., Mitra B.. ( 2006;). Conserved aspartic acid 714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue. Biochemistry45:5923–5931 [CrossRef][PubMed]
    [Google Scholar]
  45. Dutta S. J., Liu J., Stemmler A. J., Mitra B.. ( 2007;). Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity. Biochemistry46:3692–3703 [CrossRef][PubMed]
    [Google Scholar]
  46. Freire-Nordi C. S., Vieira A. A. H., Nakaie C. R., Nascimento O. R.. ( 2005;). Effect of polysaccharide capsule of the microalgae Staurastrum iversenii var. americanum on diffusion of charged and uncharged molecules, using EPR technique. Braz J Phys36:75–82
    [Google Scholar]
  47. Gabr R. M., Hassan S. H. A., Shoreit A. A. M.. ( 2008;). Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int Biodeterior Biodegradation62:195–203 [CrossRef]
    [Google Scholar]
  48. Gadd G. M.. ( 2010;). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology156:609–643 [CrossRef][PubMed]
    [Google Scholar]
  49. Gao Y., Miao C., Wang Y., Xia J., Zhou P.. ( 2012;). Metal-resistant microorganisms and metal chelators synergistically enhance the phytoremediation efficiency of Solanum nigrum L. in Cd- and Pb-contaminated soil. Environ Technol33:1383–1389 [CrossRef][PubMed]
    [Google Scholar]
  50. Gerba C. P.. ( 1996;). Principles of toxicology.. Environmental and Pollution Science322–44 Pepper I. L. et al. San Diego: Academic Press;
    [Google Scholar]
  51. Gharieb M. M., Gadd G. M.. ( 2004;). Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae . Biometals17:183–188 [CrossRef][PubMed]
    [Google Scholar]
  52. Govarthanan M., Lee K. J., Cho M., Kim J. S., Kamala-Kannan S., Oh B. T.. ( 2013;). Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere90:2267–2272 [CrossRef][PubMed]
    [Google Scholar]
  53. Grass G., Wong M. D., Rosen B. P., Smith R. L., Rensing C.. ( 2002;). ZupT is a Zn(II) uptake system in Escherichia coli. . J Bacteriol184:864–866 [CrossRef][PubMed]
    [Google Scholar]
  54. Grosse C., Friedrich S., Nies D. H.. ( 2007;). Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol12:227–240 [CrossRef][PubMed]
    [Google Scholar]
  55. Guibaud G., Tixier N., Bouju A., Baudu M.. ( 2003;). Relation between extracellular polymers’ composition and its ability to complex Cd, Cu and Pb. Chemosphere52:1701–1710 [CrossRef][PubMed]
    [Google Scholar]
  56. Guo H., Luo S., Chen L., Xiao X., Xi Q., Wei W., Zeng G., Liu C., Wan Y.. & other authors ( 2010;). Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol101:8599–8605 [CrossRef][PubMed]
    [Google Scholar]
  57. Haritha A., Sagar K. P., Tiwari A., Kiranmayi P., Rodrigue A., Mohan P. M., Singh S. S.. ( 2009;). MrdH, a novel metal resistance determinant of Pseudomonas putida KT2440, is flanked by metal-inducible mobile genetic elements. J Bacteriol191:5976–5987 [CrossRef][PubMed]
    [Google Scholar]
  58. Hasnain S., Yasmin S., Yasmin A.. ( 1993;). The effects of lead-resistant pseudomonads on the growth of Triticum aestivum seedlings under lead stress. Environ Pollut81:179–184 [CrossRef][PubMed]
    [Google Scholar]
  59. Hobman J. L., Julian D. J., Brown N. L.. ( 2012;). Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34. BMC Microbiol12:109 [CrossRef][PubMed]
    [Google Scholar]
  60. Hou Z. J., Narindrasorasak S., Bhushan B., Sarkar B., Mitra B.. ( 2001;). Functional analysis of chimeric proteins of the Wilson Cu(I)-ATPase (ATP7B) and ZntA, a Pb(II)/Zn(II)/Cd(II)-ATPase from Escherichia coli. . J Biol Chem276:40858–40863 [CrossRef][PubMed]
    [Google Scholar]
  61. Huckle J. W., Morby A. P., Turner J. S., Robinson N. J.. ( 1993;). Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol7:177–187 [CrossRef][PubMed]
    [Google Scholar]
  62. Hughes M. N., Poole R. K.. ( 1989;). Metals and Micro-organisms277 London, UK: Chapman & Hall;
    [Google Scholar]
  63. Hynninen A.. (2010).Zinc, cadmium and lead resistance mechanisms in bacteria and their contribution to biosensing
  64. Hynninen A., Touzé T., Pitkänen L., Mengin-Lecreulx D., Virta M.. ( 2009;). An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol74:384–394 [CrossRef][PubMed]
    [Google Scholar]
  65. Janssen P. J., Van Houdt R., Moors H., Monsieurs P., Morin N., Michaux A., Benotmane M. A., Leys N., Vallaeys T.. & other authors ( 2010;). The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS ONE5:e10433 [CrossRef][PubMed]
    [Google Scholar]
  66. Karnachuk O. V., Kurochkina S. Y., Tuovinen O. H.. ( 2002;). Growth of sulfate-reducing bacteria with solid-phase electron acceptors. Appl Microbiol Biotechnol58:482–486 [CrossRef][PubMed]
    [Google Scholar]
  67. Kotuby-Amacher J., Gambrell R. P., Amacher M. C.. ( 1992;). The distribution and environmental chemistry of lead in soil at an abandoned battery reclamation site. Engineering Aspects of Metal–Waste Management1–24 Iskander I. K., Selim H. M.. Boca Raton, FL: Lewis Publishers;
    [Google Scholar]
  68. Kumar M., Upreti R. K.. ( 2000;). Impact of lead stress and adaptation in Escherichia coli. . Ecotoxicol Environ Saf47:246–252 [CrossRef][PubMed]
    [Google Scholar]
  69. Laddaga R. A., Silver S.. ( 1985;). Cadmium uptake in Escherichia coli K-12. J Bacteriol162:1100–1105[PubMed]
    [Google Scholar]
  70. Laddaga R. A., Bessen R., Silver S.. ( 1985;). Cadmium resistant mutant of Bacillus subtilis 168 with reduced cadmium transport. J Bacteriol262:1106–1110
    [Google Scholar]
  71. Lee L. J., Barrett J. A., Poole R. K.. ( 2005;). Genome-wide transcriptional response of chemostat-cultured Escherichia coli to zinc. J Bacteriol187:1124–1134 [CrossRef][PubMed]
    [Google Scholar]
  72. Leedjärv A., Ivask A., Virta M.. ( 2008;). Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. J Bacteriol190:2680–2689 [CrossRef][PubMed]
    [Google Scholar]
  73. Leonhartsberger S., Huber A., Lottspeich F., Böck A.. ( 2001;). The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J Mol Biol307:93–105 [CrossRef][PubMed]
    [Google Scholar]
  74. Levinson H. S., Mahler I.. ( 1998;). Phosphatase activity and lead resistance in Citrobacter freundii and Staphylococcus aureus. . FEMS Microbiol Lett161:135–138 [CrossRef][PubMed]
    [Google Scholar]
  75. Levinson H. S., Mahler I., Blackwelder P., Hood T.. ( 1996;). Lead resistance and sensitivity in Staphylococcus aureus. . FEMS Microbiol Lett145:421–425 [CrossRef][PubMed]
    [Google Scholar]
  76. Li Z. S., Lu Y. P., Zhen R. G., Szczypka M., Thiele D. J., Rea P. A.. ( 1997;). A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci U S A94:42–47 [CrossRef][PubMed]
    [Google Scholar]
  77. Liu T., Golden J. W., Giedroc D. P.. ( 2005;). A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator. Biochemistry44:8673–8683 [CrossRef][PubMed]
    [Google Scholar]
  78. Liu J., Dutta S. J., Stemmler A. J., Mitra B.. ( 2006;). Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity. Biochemistry45:763–772 [CrossRef][PubMed]
    [Google Scholar]
  79. Loaëc M., Olier R., Guezennec J.. ( 1997;). Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Water Res31:1171–1179 [CrossRef]
    [Google Scholar]
  80. Makui H., Roig E., Cole S. T., Helmann J. D., Gros P., Cellier M. F.. ( 2000;). Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol35:1065–1078 [CrossRef][PubMed]
    [Google Scholar]
  81. Mayer R. A., Godwin H. A.. ( 2006;). Preparation of media and buffers with soluble lead. Anal Biochem356:142–144 [CrossRef][PubMed]
    [Google Scholar]
  82. Mire C. E., Tourjee J. A., O’Brien W. F., Ramanujachary K. V., Hecht G. B.. ( 2004;). Lead precipitation by Vibrio harveyi: evidence for novel quorum-sensing interactions. Appl Environ Microbiol70:855–864 [CrossRef][PubMed]
    [Google Scholar]
  83. Mitra B., Sharma R.. ( 2001;). The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function. Biochemistry40:7694–7699 [CrossRef][PubMed]
    [Google Scholar]
  84. Monchy S., Benotmane M. A., Janssen P., Vallaeys T., Taghavi S., van der Lelie D., Mergeay M.. ( 2007;). Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol189:7417–7425 [CrossRef][PubMed]
    [Google Scholar]
  85. Monsieurs P., Moors H., Van Houdt R., Janssen P. J., Janssen A., Coninx I., Mergeay M., Leys N.. ( 2011;). Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals24:1133–1151 [CrossRef][PubMed]
    [Google Scholar]
  86. Morillo J. A., Aguilera M., Ramos-Cormenzana A., Monteoliva-Sánchez M.. ( 2006;). Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate. Curr Microbiol53:189–193 [CrossRef][PubMed]
    [Google Scholar]
  87. Murthy S., Geetha B., Sarangi S. K.. ( 2011;). Effect of lead on metallothionein concentration in lead-resistant bacteria Bacillus cereus isolated from industrial effluent. Afr J Biotechnol10:15966–15972 [CrossRef]
    [Google Scholar]
  88. Naik M. M., Dubey S. K.. ( 2011;). Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr Microbiol62:409–414 [CrossRef][PubMed]
    [Google Scholar]
  89. Naik M. M., Pandey A., Dubey S. K.. ( 2012;). Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicol Environ Saf79:129–133 [CrossRef][PubMed]
    [Google Scholar]
  90. Nies D. H.. ( 1992;). Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid27:17–28 [CrossRef][PubMed]
    [Google Scholar]
  91. Nies D. H.. ( 2003;). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev27:313–339 [CrossRef][PubMed]
    [Google Scholar]
  92. Noll M., Petrukhin K., Lutsenko S.. ( 1998;). Identification of a novel transcription regulator from Proteus mirabilis, PMTR, revealed a possible role of YJAI protein in balancing zinc in Escherichia coli. . J Biol Chem273:21393–21401 [CrossRef][PubMed]
    [Google Scholar]
  93. Pal A., Paul A. K.. ( 2008;). Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol48:49–64 [CrossRef][PubMed]
    [Google Scholar]
  94. Paperi R., Micheletti E., De Philippis R.. ( 2006;). Optimization of copper sorbing-desorbing cycles with confined cultures of the exopolysaccharide-producing cyanobacterium Cyanospira capsulata. . J Appl Microbiol101:1351–1356 [CrossRef][PubMed]
    [Google Scholar]
  95. Park J., Bolan N., Megharaj M., Naidu R.. ( 2010;). Isolation of phosphate-solubilizing bacteria and characterization of their effects on lead immobilization. Pedologist53:67–75
    [Google Scholar]
  96. Park J. H., Bolan N., Meghraj M., Naidu R., Chung J. W.. ( 2011;). Bacterial-assisted immobilization of lead in soils: implications for remediation. Pedologist54:162–174
    [Google Scholar]
  97. Pennella M. A., Giedroc D. P.. ( 2005;). Structural determinants of metal selectivity in prokaryotic metal-responsive transcriptional regulators. Biometals8:413–428 [CrossRef]
    [Google Scholar]
  98. Perdrial N., Liewig N., Delphin J. E., Elsass F.. ( 2008;). TEM evidence for intracellular accumulation of lead by bacteria in subsurface environments. Chem Geol253:196–204 [CrossRef]
    [Google Scholar]
  99. Pereira S., Micheletti E., Zille A., Santos A., Moradas-Ferreira P., Tamagnini P., De Philippis R.. ( 2011;). Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell. Microbiology157:451–458 [CrossRef][PubMed]
    [Google Scholar]
  100. Perez M. P. J. A., García-Ribera R., Quesada T., Aguilera M., Ramos-Cormenzana A., Monteoliva-Sánchez M.. ( 2008;). Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. . World J Microbiol Biotechnol24:2699–2704 [CrossRef]
    [Google Scholar]
  101. Permina E. A., Kazakov A. E., Kalinina O. V., Gelfand M. S.. ( 2006;). Comparative genomics of regulation of heavy metal resistance in Eubacteria. . BMC Microbiol6:49–60 [CrossRef][PubMed]
    [Google Scholar]
  102. Pongratz R., Heumann K. G.. ( 1999;). Production of methylated mercury, lead and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere39:89–102 [CrossRef]
    [Google Scholar]
  103. Prévéral S., Ansoborlo E., Mari S., Vavasseur A., Forestier C.. ( 2006;). Metal(loid)s and radionuclides cytotoxicity in Saccharomyces cerevisiae. Role of YCF1, glutathione and effect of buthionine sulfoximine. Biochimie88:1651–1663 [CrossRef][PubMed]
    [Google Scholar]
  104. Raimunda D., Subramanian P., Stemmler T., Argüello J. M.. ( 2012;). A tetrahedral coordination of zinc during transmembrane transport by P-type Zn2+-ATPases. Biochim Biophys Acta1818:1374–1377 [CrossRef][PubMed]
    [Google Scholar]
  105. Reisinger K., Stoeppler M., Nürnberg H. W.. ( 1981;). Evidence for the absence of biological methylation of lead in the environment. Nature291:228–230 [CrossRef]
    [Google Scholar]
  106. Rensing C., Mitra B., Rosen B. P.. ( 1997;). The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A94:14326–14331 [CrossRef][PubMed]
    [Google Scholar]
  107. Rensing C., Sun Y., Mitra B., Rosen B. P.. ( 1998;). Pb(II)-translocating P-type ATPases. J Biol Chem273:32614–32617 [CrossRef][PubMed]
    [Google Scholar]
  108. Rensing C., Ghosh M., Rosen B. P.. ( 1999;). Families of soft-metal-ion-transporting ATPases. J Bacteriol181:5891–5897[PubMed]
    [Google Scholar]
  109. Rhee Y. J., Hillier S., Gadd G. M.. ( 2012;). Lead transformation to pyromorphite by fungi. Curr Biol22:237–241 [CrossRef][PubMed]
    [Google Scholar]
  110. Rifaat H. M., Mahrous K. F., Khalil W. K. B.. ( 2009;). Effect of heavy metals upon metallothioneins in some Streptomyces species isolated from Egyptian soil. J Appl Sci Environ Sanit4:197–206
    [Google Scholar]
  111. Roane T. M.. ( 1999;). Lead resistance in two bacterial isolates from heavy metal contaminated soils. Microb Ecol37:218–224 [CrossRef][PubMed]
    [Google Scholar]
  112. Roane T. M., Kellogg S. T.. ( 1996;). Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol42:593–603 [CrossRef][PubMed]
    [Google Scholar]
  113. Sag Y., Özer D., Kutsal T.. ( 1995;). A comparative study of the biosorption of lead(II) ions to Z. ramigera and R. arrhizus. . Process Biochem30:169–174[CrossRef]
    [Google Scholar]
  114. Saha R., Saha N., Donofrio R. S., Bestervelt L. L.. ( 2012;). Microbial siderophores: a mini review. J Basic Microbiol52:1–15[PubMed][CrossRef]
    [Google Scholar]
  115. Sakamoto F., Ohnuki T., Fujii T., Iefuji H.. ( 2010;). Response of Saccharomyces cerevisiae to heavy element stress: lead vs. uranium. Geomicrobiol J27:240–244 [CrossRef]
    [Google Scholar]
  116. Salehizadeh H., Shojaosadati S. A.. ( 2003;). Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. . Water Res37:4231–4235 [CrossRef][PubMed]
    [Google Scholar]
  117. Sani R. K., Geesey G., Peyton B.. ( 2001;). Assessment of lead toxicity to Desulfovibrio desulfuricans G20: influence of components of Lactate C medium. Adv Environ Res5:269–276 [CrossRef]
    [Google Scholar]
  118. Sayer J. A., Cotter-Howells J. D., Watson C., Hillier S., Gadd G. M.. ( 1999;). Lead mineral transformation by fungi. Curr Biol9:691–694 [CrossRef][PubMed]
    [Google Scholar]
  119. Schalk I. J., Hannauer M., Braud A.. ( 2011;). New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol13:2844–2854 [CrossRef][PubMed]
    [Google Scholar]
  120. Scherer J., Nies D. H.. ( 2009;). CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol73:601–621 [CrossRef][PubMed]
    [Google Scholar]
  121. Schwab A. P., He Y. H., Banks M. K.. ( 2005;). The influence of organic ligands on the retention of lead in soil. Chemosphere61:856–866 [CrossRef][PubMed]
    [Google Scholar]
  122. Shen L., Xia J. L., He H., Nie Z. Y.. ( 2008;). Comparative study on biosorption of Pb(II) and Cr(VI) by Synechococcus sp. Trans Nonferr Metal Soc18:1336–1342 [CrossRef]
    [Google Scholar]
  123. Sheng X.-F., Xia J.-J., Jiang C. Y., He L. Y., Qian M.. ( 2008;). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut156:1164–1170 [CrossRef][PubMed]
    [Google Scholar]
  124. Shin M. N., Shim J., You Y., Myung H., Bang K. S., Cho M., Kamala-Kannan S., Oh B. T.. ( 2012;). Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. . J Hazard Mater199–200:314–320 [CrossRef][PubMed]
    [Google Scholar]
  125. Shiraishi E., Inouhe M., Joho M., Tohoyama H.. ( 2000;). The cadmium-resistant gene, CAD2, which is a mutated putative copper-transporter gene (PCA1), controls the intracellular cadmium-level in the yeast S. cerevisiae . Curr Genet37:79–86 [CrossRef][PubMed]
    [Google Scholar]
  126. Siegel F. R.. ( 2002;). Environmental Geochemistry of Potentially Toxic Metals218 Berlin: Springer-Verlag; [CrossRef]
    [Google Scholar]
  127. Silver S., Phung T.. ( 2005;). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol32:587–605 [CrossRef][PubMed]
    [Google Scholar]
  128. Silverberg B. A., Wong P. T., Chau Y. K.. ( 1976;). Ultrastructural examination of Aeromonas cultured in the presence of organic lead. Appl Environ Microbiol32:723–725[PubMed]
    [Google Scholar]
  129. Silverberg B. A., Wong P. T. S., Chau Y. K.. ( 1977;). Effect of tetramethyl lead on freshwater green algae. Arch Environ Contam Toxicol5:305–313 [CrossRef][PubMed]
    [Google Scholar]
  130. Singh S. P., Tack F. M. G., Verioo M. G.. ( 1996;). Extractability and bioavailability of heavy metals in surface soils derived from dredged sediments. Chem Spec Bioavail8:105–110
    [Google Scholar]
  131. Smeaton C. M., Fryer B. J., Weisener C. G.. ( 2009;). Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite. Environ Sci Technol43:8086–8091 [CrossRef][PubMed]
    [Google Scholar]
  132. So N. W., Rho J. Y., Lee S. Y., Hancock I. C., Kim J. H.. ( 2001;). A lead-absorbing protein with superoxide dismutase activity from Streptomyces subrutilus. . FEMS Microbiol Lett194:93–98 [CrossRef][PubMed]
    [Google Scholar]
  133. Soares E. V., Duarte A. P., Boaventura R. A., Soares H. M.. ( 2002;). Viability and release of complexing compounds during accumulation of heavy metals by a brewer’s yeast. Appl Microbiol Biotechnol58:836–841 [CrossRef][PubMed]
    [Google Scholar]
  134. Soares E. V., Hebbelinck K., Soares H. M.. ( 2003;). Toxic effects caused by heavy metals in the yeast Saccharomyces cerevisiae: a comparative study. Can J Microbiol49:336–343 [CrossRef][PubMed]
    [Google Scholar]
  135. Song W. Y., Sohn E. J., Martinoia E., Lee Y. J., Yang Y. Y., Jasinski M., Forestier C., Hwang I., Lee Y.. ( 2003;). Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol21:914–919 [CrossRef][PubMed]
    [Google Scholar]
  136. Van der Heggen M., Martins S., Flores G., Soares E. V.. ( 2010;). Lead toxicity in Saccharomyces cerevisiae. . Appl Microbiol Biotechnol88:1355–1361 [CrossRef][PubMed]
    [Google Scholar]
  137. Sparks D. L.. ( 2005;). Toxic metals in the environment: the role of surfaces. Elements1:193–197 [CrossRef]
    [Google Scholar]
  138. Spiro T. G., Stigliani W. M.. ( 2002;). Chemistry of the Environment356 Upper Saddle River, NJ: Prentice-Hall;
    [Google Scholar]
  139. Suh J. H., Kim D. S., Yun J. W., Song S. K.. ( 1998;). Process of Pb2+ accumulation in Saccharomyces cerevisiae. . Biotechnol Lett20:153–156 [CrossRef]
    [Google Scholar]
  140. Suh J. H., Yun J. W., Kim D. S.. ( 1999a;). Cation (K+, Mg2+, Ca2+) exchange in Pb2+ accumulation by Saccharomyces cerevisiae. . Bioprocess Eng21:383–387 [CrossRef]
    [Google Scholar]
  141. Suh J. H., Yun J. W., Kim D. S.. ( 1999b;). Effect of extracellular polymeric substances (EPS) on Pb2+ accumulation by Aureobasidium pullulans. . Bioprocess Biosyst Eng21:1–4
    [Google Scholar]
  142. Suh J. H., Kim D. S., Song S. K.. ( 2001;). Inhibition effect of initial Pb2+ concentration on Pb2+ accumulation by Saccharomyces cerevisiae and Aureobasidium pullulans. . Bioresour Technol79:99–102 [CrossRef][PubMed]
    [Google Scholar]
  143. Sun F., Shao Z.. ( 2007;). Biosorption and bioaccumulation of lead by Penicillium sp. Psf-2 isolated from the deep sea sediment of the Pacific Ocean. Extremophiles11:853–858 [CrossRef][PubMed]
    [Google Scholar]
  144. Sun Y., Wong M. D., Rosen B. P.. ( 2001;). Role of cysteinyl residues in sensing Pb(II), Cd(II), and Zn(II) by the plasmid pI258 CadC repressor. J Biol Chem276:14955–14960 [CrossRef][PubMed]
    [Google Scholar]
  145. Szczypka M. S., Wemmie J. A., Moye-Rowley W. S., Thiele D. J.. ( 1994;). A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem269:22853–22857[PubMed]
    [Google Scholar]
  146. Taboski M. A. S., Rand T. G., Piórko A.. ( 2005;). Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica. . FEMS Microbiol Ecol53:445–453 [CrossRef][PubMed]
    [Google Scholar]
  147. Taghavi S., Lesaulnier C., Monchy S., Wattiez R., Mergeay M., van der Lelie D.. ( 2009;). Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie van Leeuwenhoek96:171–182 [CrossRef][PubMed]
    [Google Scholar]
  148. Templeton A. S., Trainor T. P., Spormann A. M., Newville M., Sutton S. R., Dohnalkova A., Gorby Y., Brown G. E. Jr. ( 2003;). Sorption versus biomineralization of Pb(II) within Burkholderia cepacia biofilms. Environ Sci Technol37:300–307 [CrossRef][PubMed]
    [Google Scholar]
  149. Thayer J. S.. ( 2002;). Biological methylation of less-studied elements. Appl Organomet Chem16:677–691 [CrossRef]
    [Google Scholar]
  150. Thayer J. S., Brinckman F.. ( 1982;). The biological methylation of metals and metalloids. Adv Organomet Chem20:313–356 [CrossRef]
    [Google Scholar]
  151. Thelwell C., Robinson N. J., Turner-Cavet J. S.. ( 1998;). An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc Natl Acad Sci U S A95:10728–10733 [CrossRef][PubMed]
    [Google Scholar]
  152. Tornabene T. G., Edwards H. W.. ( 1972;). Microbial uptake of lead. Science176:1334–1335 [CrossRef][PubMed]
    [Google Scholar]
  153. Tornabene T. G., Peterson S. L.. ( 1975;). Interaction of lead and bacterial lipids. Appl Microbiol29:680–684[PubMed]
    [Google Scholar]
  154. Trajanovska S., Britz M. L., Bhave M.. ( 1997;). Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Biodegradation8:113–124 [CrossRef][PubMed]
    [Google Scholar]
  155. Tripathi M., Munot H. P., Shouche Y., Meyer J. M., Goel R.. ( 2005;). Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol50:233–237 [CrossRef][PubMed]
    [Google Scholar]
  156. Turner J. S., Glands P. D., Samson A. C. R., Robinson N. J.. ( 1996;). Zn2+-sensing by the cyanobacterial metallothionein repressor SmtB: different motifs mediate metal-induced protein-DNA dissociation. Nucleic Acids Res24:3714–3721 [CrossRef][PubMed]
    [Google Scholar]
  157. Tynecka Z., Gos Z., Zajac J.. ( 1981;). Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus. . J Bacteriol147:305–312[PubMed]
    [Google Scholar]
  158. Vallee B. L., Ulmer D. D.. ( 1972;). Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem41:91–128 [CrossRef][PubMed]
    [Google Scholar]
  159. VanZile M. L., Chen X., Giedroc D. P.. ( 2002;). Allosteric negative regulation of smt O/P binding of the zinc sensor, SmtB, by metal ions: a coupled equilibrium analysis. Biochemistry41:9776–9786 [CrossRef][PubMed]
    [Google Scholar]
  160. Walton A., Ebdon L., Millward G.. ( 1988;). Methylation of inorganic lead by Tamyar Estuary (UK) sediments. Appl Organomet Chem2:87–93 [CrossRef]
    [Google Scholar]
  161. Wang Y., Kendall J., Cavet J. S., Giedroc D. P.. ( 2010;). Elucidation of the functional metal binding profile of a Cd/Pb sensor CmtR from Streptomyces coelicolor. . Biochemistry49:6617–6626 [CrossRef][PubMed]
    [Google Scholar]
  162. Wilson C., Brigmon R. L., Knox A., Seaman J., Smith G.. ( 2006;). Effects of microbial and phosphate amendments on the bioavailability of lead (Pb) in shooting range soil. Bull Environ Contam Toxicol76:392–399 [CrossRef][PubMed]
    [Google Scholar]
  163. Wong P. T. S., Chau Y. K., Luxon P. L.. ( 1975;). Methylation of lead in the environment. Nature253:263–264 [CrossRef][PubMed]
    [Google Scholar]
  164. Wu S. C., Luo Y. M., Cheung K. C., Wong M. H.. ( 2006;). Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: a laboratory study. Environ Pollut144:765–773 [CrossRef][PubMed]
    [Google Scholar]
  165. Yokel J., Delistraty D. A.. ( 2003;). Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the Hanford site (USA). Environ Toxicol18:104–114 [CrossRef][PubMed]
    [Google Scholar]
  166. Yoon K. P., Misra T. K., Silver S.. ( 1991;). Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol173:7643–7649[PubMed]
    [Google Scholar]
  167. Yuan X. F., Tang C. C.. ( 1999;). DNA damage and repair in yeast (Saccharomyces cerevisiae) cells exposed to lead. J Environ Sci Health A34:1117–1128 [CrossRef]
    [Google Scholar]
  168. Zanardini E., Andreoni V., Borina S., Cappitellia F., Daffonchio D., Talottaa P., Sorlinia C., Ranallib G., Brunic S., Cariatic F.. ( 1997;). Lead-resistant microorganisms from red stains of marble of the Certosa of Pavia, Italy and use of nucleic acid-based techniques for their detection. Int Biodeter Biodegr40:171–182 [CrossRef]
    [Google Scholar]
  169. Zheng C., Li Y., Nie L., Qian L., Cai L., Liu J.. ( 2012;). Transcriptional and functional studies of a Cd(II)/Pb(II)-responsive transcriptional regulator(CmtR) from Acidithiobacillus ferrooxidans ATCC 23270. Curr Microbiol65:117–121 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070284-0
Loading
/content/journal/micro/10.1099/mic.0.070284-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error