1887

Abstract

Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including and species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of , designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than , the only other organism in pure culture previously shown to oxidize S° with current production. The abundance of species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069930-0
2014-01-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/123.html?itemId=/content/journal/micro/10.1099/mic.0.069930-0&mimeType=html&fmt=ahah

References

  1. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A.. ( 1990;). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. . Appl Environ Microbiol 56:, 1919–1925.[PubMed]
    [Google Scholar]
  2. Bond D. R., Holmes D. E., Tender L. M., Lovley D. R.. ( 2002;). Electrode-reducing microorganisms that harvest energy from marine sediments. . Science 295:, 483–485. [CrossRef][PubMed]
    [Google Scholar]
  3. Coates J. D., Lonergan D. J., Philips E. J., Jenter H., Lovley D. R.. ( 1995;). Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. . Arch Microbiol 164:, 406–413. [CrossRef][PubMed]
    [Google Scholar]
  4. Eden P. A., Schmidt T. M., Blakemore R. P., Pace N. R.. ( 1991;). Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. . Int J Syst Bacteriol 41:, 324–325. [CrossRef][PubMed]
    [Google Scholar]
  5. Friedrich C. G., Rother D., Bardischewsky F., Quentmeier A., Fischer J.. ( 2001;). Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism. ? Appl Environ Microbiol 67:, 2873–2882. [CrossRef][PubMed]
    [Google Scholar]
  6. Friedrich C. G., Bardischewsky F., Rother D., Quentmeier A., Fischer J.. ( 2005;). Prokaryotic sulfur oxidation. . Curr Opin Microbiol 8:, 253–259. [CrossRef][PubMed]
    [Google Scholar]
  7. Garcia-de-Lomas J., Corzo A., Carmen Portillo M., Gonzalez J. M., Andrades J. A., Saiz-Jimenez C., Garcia-Robledo E.. ( 2007;). Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms. . Water Res 41:, 3121–3131. [CrossRef][PubMed]
    [Google Scholar]
  8. Gouy M., Guindon S., Gascuel O.. ( 2010;). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27:, 221–224. [CrossRef][PubMed]
    [Google Scholar]
  9. Holmes D. E., Bond D. R., Lovley D. R.. ( 2004a;). Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. . Appl Environ Microbiol 70:, 1234–1237. [CrossRef][PubMed]
    [Google Scholar]
  10. Holmes D. E., Bond D. R., O’Neil R. A., Reimers C. E., Tender L. R., Lovley D. R.. ( 2004b;). Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. . Microb Ecol 48:, 178–190. [CrossRef][PubMed]
    [Google Scholar]
  11. Holmes D. E., Nevin K. P., Lovley D. R.. ( 2004c;). Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. . Int J Syst Evol Microbiol 54:, 1591–1599. [CrossRef][PubMed]
    [Google Scholar]
  12. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  13. Lovley D. R.. ( 2006;). Bug juice: harvesting electricity with microorganisms. . Nat Rev Microbiol 4:, 497–508. [CrossRef][PubMed]
    [Google Scholar]
  14. Lovley D. R., Phillips E. J.. ( 1988;). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. . Appl Environ Microbiol 54:, 1472–1480.[PubMed]
    [Google Scholar]
  15. Lovley D. R., Phillips E. J.. ( 1994;). Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. . Appl Environ Microbiol 60:, 2394–2399.[PubMed]
    [Google Scholar]
  16. Lovley D. R., Ueki T., Zhang T., Malvankar N. S., Shrestha P. M., Flanagan K. A., Aklujkar M., Butler J. E., Giloteaux L.. & other authors ( 2011;). Geobacter: the microbe electric’s physiology, ecology, and practical applications. . Adv Microb Physiol 59:, 1–100. [CrossRef][PubMed]
    [Google Scholar]
  17. Michaelidou U., ter Heijne A., Euverink G. J., Hamelers H. V., Stams A. J., Geelhoed J. S.. ( 2011;). Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell. . Appl Environ Microbiol 77:, 1069–1075. [CrossRef][PubMed]
    [Google Scholar]
  18. Nevin K. P., Holmes D. E., Woodard T. L., Hinlein E. S., Ostendorf D. W., Lovley D. R.. ( 2005;). Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. . Int J Syst Evol Microbiol 55:, 1667–1674. [CrossRef][PubMed]
    [Google Scholar]
  19. Nielsen M. E., Wu D. M., Girguis P. R., Reimers C. E.. ( 2009;). Influence of substrate on electron transfer mechanisms in chambered benthic microbial fuel cells. . Environ Sci Technol 43:, 8671–8677. [CrossRef][PubMed]
    [Google Scholar]
  20. Pronk J. T., de Bruyn J. C., Bos P., Kuenen J. G.. ( 1992;). Anaerobic growth of Thiobacillus ferrooxidans.. Appl Environ Microbiol 58:, 2227–2230.[PubMed]
    [Google Scholar]
  21. Rabaey K., Van de Sompel K., Maignien L., Boon N., Aelterman P., Clauwaert P., De Schamphelaire L., Pham H. T., Vermeulen J.. & other authors ( 2006;). Microbial fuel cells for sulfide removal. . Environ Sci Technol 40:, 5218–5224. [CrossRef][PubMed]
    [Google Scholar]
  22. Reguera G., Nevin K. P., Nicoll J. S., Covalla S. F., Woodard T. L., Lovley D. R.. ( 2006;). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. . Appl Environ Microbiol 72:, 7345–7348. [CrossRef][PubMed]
    [Google Scholar]
  23. Reimers C. E., Tender L. M., Fertig S., Wang W.. ( 2001;). Harvesting energy from the marine sediment–water interface. . Environ Sci Technol 35:, 192–195. [CrossRef][PubMed]
    [Google Scholar]
  24. Reimers C. E., Girguis P., Stecher H. A., Tender L. M., Ryckelynck N., Whaling P.. ( 2006;). Microbial fuel cell energy from an ocean cold seep. . Geobiology 4:, 123–136. [CrossRef]
    [Google Scholar]
  25. Reimers C. E., Stecher H. A. III, Westall J. C., Alleau Y., Howell K. A., Soule L., White H. K., Girguis P. R.. ( 2007;). Substrate degradation kinetics, microbial diversity, and current efficiency of microbial fuel cells supplied with marine plankton. . Appl Environ Microbiol 73:, 7029–7040. [CrossRef][PubMed]
    [Google Scholar]
  26. Ryckelynck N., Stecher H. A. III, Reimers C. E.. ( 2005;). Understanding the anodic mechanism of a seafloor fuel cell: Interactions between geochemistry and microbial activity. . Biogeochemistry 76:, 113–139. [CrossRef]
    [Google Scholar]
  27. Schedel M., Trüper H. G.. ( 1980;). Anaerobic oxidation of thiosulfate and elemental sulfur in Thiobacillus denitrificans.. Arch Microbiol 124:, 205–210. [CrossRef]
    [Google Scholar]
  28. Sievert S. M., Kiene R. P., Schulz-Vogt H. N.. ( 2007;). The sulfur cycle. . Oceanography (Wash DC) 20:, 117–123. [CrossRef]
    [Google Scholar]
  29. Sievert S. M., Scott K. M., Klotz M. G., Chain P. S., Hauser L. J., Hemp J., Hügler M., Land M., Lapidus A.. & other authors ( 2008;). Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans.. Appl Environ Microbiol 74:, 1145–1156. [CrossRef][PubMed]
    [Google Scholar]
  30. Sugio T., Domatsu C., Munakata O., Tano T., Imai K.. ( 1985;). Role of a ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans.. Appl Environ Microbiol 49:, 1401–1406.[PubMed]
    [Google Scholar]
  31. Sun M., Mu Z. X., Chen Y. P., Sheng G. P., Liu X. W., Chen Y. Z., Zhao Y., Wang H. L., Yu H. Q.. & other authors ( 2009;). Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. . Environ Sci Technol 43:, 3372–3377. [CrossRef][PubMed]
    [Google Scholar]
  32. Sun M., Tong Z. H., Sheng G. P., Chen Y. Z., Zhang F., Mu Z. X., Wang H. L., Zeng R. J., Liu X. W., Yu H.-Q.. ( 2010;). Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell. . Biosens Bioelectron 26:, 470–476. [CrossRef][PubMed]
    [Google Scholar]
  33. Takai K., Suzuki M., Nakagawa S., Miyazaki M., Suzuki Y., Inagaki F., Horikoshi K.. ( 2006;). Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas.. Int J Syst Evol Microbiol 56:, 1725–1733. [CrossRef][PubMed]
    [Google Scholar]
  34. Tender L. M., Reimers C. E., Stecher H. A. III, Holmes D. E., Bond D. R., Lowy D. A., Pilobello K., Fertig S. J., Lovley D. R.. ( 2002;). Harnessing microbially generated power on the seafloor. . Nat Biotechnol 20:, 821–825. [CrossRef][PubMed]
    [Google Scholar]
  35. Waksman S. A., Joffe J. S.. ( 1922;). Microorganisms concerned in the oxidation of sulfur in the soil: II. Thiobacillus thiooxidans, a new sulfur-oxidizing organism isolated from the soil. . J Bacteriol 7:, 239–256.[PubMed]
    [Google Scholar]
  36. Zhang M., Zhang T., Shao M. F., Fang H. H.. ( 2009;). Autotrophic denitrification in nitrate-induced marine sediment remediation and Sulfurimonas denitrificans-like bacteria. . Chemosphere 76:, 677–682. [CrossRef][PubMed]
    [Google Scholar]
  37. Zhang T., Gannon S. M., Nevin K. P., Franks A. E., Lovley D. R.. ( 2010;). Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. . Environ Microbiol 12:, 1011–1020. [CrossRef][PubMed]
    [Google Scholar]
  38. Zhang T., Bain T. S., Nevin K. P., Barlett M. A., Lovley D. R.. ( 2012;). Anaerobic benzene oxidation by Geobacter species. . Appl Environ Microbiol 78:, 8304–8310. [CrossRef][PubMed]
    [Google Scholar]
  39. Zhao F., Rahunen N., Varcoe J. R., Chandra A., Avignone-Rossa C., Thumser A. E., Slade R. C.. ( 2008;). Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. . Environ Sci Technol 42:, 4971–4976. [CrossRef][PubMed]
    [Google Scholar]
  40. Zhao F., Rahunen N., Varcoe J. R., Roberts A. J., Avignone-Rossa C., Thumser A. E., Slade R. C.. ( 2009;). Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. . Biosens Bioelectron 24:, 1931–1936. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069930-0
Loading
/content/journal/micro/10.1099/mic.0.069930-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error