1887

Abstract

In general, prokaryotes are considered to be single-celled organisms that lack internal membrane-bound organelles. However, many bacteria produce proteinaceous microcompartments that serve a similar purpose, i.e. to concentrate specific enzymic reactions together or to shield the wider cytoplasm from toxic metabolic intermediates. In this paper, a synthetic operon encoding the key structural components of a microcompartment was designed based on the genes for the propanediol utilization (Pdu) microcompartment. The genes chosen included , -, -, -, -, - and -, and each was shown to produce protein in an chassis. In parallel, a set of compatible vectors designed to express non-native cargo proteins was also designed and tested. Engineered hexa-His tags allowed isolation of the components of the microcompartments together with co-expressed, untagged, cargo proteins. Finally, an protease accessibility assay suggested that a PduD–GFP fusion could be protected from proteolysis when co-expressed with the synthetic microcompartment operon. This work gives encouragement that it may be possible to harness the genes encoding a non-native microcompartment for future biotechnological applications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069922-0
2013-11-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2427.html?itemId=/content/journal/micro/10.1099/mic.0.069922-0&mimeType=html&fmt=ahah

References

  1. Bartolomé B., Jubete Y., Martínez E., de la Cruz F.. ( 1991;). Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. . Gene 102:, 75–78. [CrossRef][PubMed]
    [Google Scholar]
  2. Blattner F. R., Plunkett G. III, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K.. & other authors ( 1997;). The complete genome sequence of Escherichia coli K-12. . Science 277:, 1453–1462. [CrossRef][PubMed]
    [Google Scholar]
  3. Bobik T. A., Havemann G. D., Busch R. J., Williams D. S., Aldrich H. C.. ( 1999;). The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation. . J Bacteriol 181:, 5967–5975.[PubMed]
    [Google Scholar]
  4. Cheng S., Liu Y., Crowley C. S., Yeates T. O., Bobik T. A.. ( 2008;). Bacterial microcompartments: their properties and paradoxes. . Bioessays 30:, 1084–1095. [CrossRef][PubMed]
    [Google Scholar]
  5. Coulthurst S. J., Dawson A., Hunter W. N., Sargent F.. ( 2012;). Conserved signal peptide recognition systems across the prokaryotic domains. . Biochemistry 51:, 1678–1686. [CrossRef][PubMed]
    [Google Scholar]
  6. Crowley C. S., Sawaya M. R., Bobik T. A., Yeates T. O.. ( 2008;). Structure of the PduU shell protein from the Pdu microcompartment of Salmonella. . Structure 16:, 1324–1332. [CrossRef][PubMed]
    [Google Scholar]
  7. DeLisa M. P., Samuelson P., Palmer T., Georgiou G.. ( 2002;). Genetic analysis of the twin arginine translocator secretion pathway in bacteria. . J Biol Chem 277:, 29825–29831. [CrossRef][PubMed]
    [Google Scholar]
  8. Fan C., Bobik T. A.. ( 2011;). The N-terminal region of the medium subunit (PduD) packages adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu microcompartment. . J Bacteriol 193:, 5623–5628. [CrossRef][PubMed]
    [Google Scholar]
  9. Fan C., Cheng S., Liu Y., Escobar C. M., Crowley C. S., Jefferson R. E., Yeates T. O., Bobik T. A.. ( 2010;). Short N-terminal sequences package proteins into bacterial microcompartments. . Proc Natl Acad Sci U S A 107:, 7509–7514. [CrossRef][PubMed]
    [Google Scholar]
  10. Fan C., Cheng S., Sinha S., Bobik T. A.. ( 2012;). Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments. . Proc Natl Acad Sci U S A 109:, 14995–15000. [CrossRef][PubMed]
    [Google Scholar]
  11. Frank S., Lawrence A. D., Prentice M. B., Warren M. J.. ( 2013;). Bacterial microcompartments moving into a synthetic biological world. . J Biotechnol 163:, 273–279. [CrossRef][PubMed]
    [Google Scholar]
  12. Havemann G. D., Bobik T. A.. ( 2003;). Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. . J Bacteriol 185:, 5086–5095. [CrossRef][PubMed]
    [Google Scholar]
  13. Iancu C. V., Ding H. J., Morris D. M., Dias D. P., Gonzales A. D., Martino A., Jensen G. J.. ( 2007;). The structure of isolated Synechococcus strain WH8102 carboxysomes as revealed by electron cryotomography. . J Mol Biol 372:, 764–773. [CrossRef][PubMed]
    [Google Scholar]
  14. Jack R. L., Buchanan G., Dubini A., Hatzixanthis K., Palmer T., Sargent F.. ( 2004;). Coordinating assembly and export of complex bacterial proteins. . EMBO J 23:, 3962–3972. [CrossRef][PubMed]
    [Google Scholar]
  15. Karzai A. W., Roche E. D., Sauer R. T.. ( 2000;). The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. . Nat Struct Biol 7:, 449–455. [CrossRef][PubMed]
    [Google Scholar]
  16. Keasling J. D.. ( 2008;). Synthetic biology for synthetic chemistry. . ACS Chem Biol 3:, 64–76. [CrossRef][PubMed]
    [Google Scholar]
  17. Keiler K. C., Waller P. R., Sauer R. T.. ( 1996;). Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. . Science 271:, 990–993. [CrossRef][PubMed]
    [Google Scholar]
  18. Kerfeld C. A., Sawaya M. R., Tanaka S., Nguyen C. V., Phillips M., Beeby M., Yeates T. O.. ( 2005;). Protein structures forming the shell of primitive bacterial organelles. . Science 309:, 936–938. [CrossRef][PubMed]
    [Google Scholar]
  19. Kerfeld C. A., Heinhorst S., Cannon G. C.. ( 2010;). Bacterial microcompartments. . Annu Rev Microbiol 64:, 391–408. [CrossRef][PubMed]
    [Google Scholar]
  20. Kofoid E., Rappleye C., Stojiljkovic I., Roth J.. ( 1999;). The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. . J Bacteriol 181:, 5317–5329.[PubMed]
    [Google Scholar]
  21. Komine Y., Kitabatake M., Yokogawa T., Nishikawa K., Inokuchi H.. ( 1994;). A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. . Proc Natl Acad Sci U S A 91:, 9223–9227. [CrossRef][PubMed]
    [Google Scholar]
  22. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. . Nature 227:, 680–685. [CrossRef][PubMed]
    [Google Scholar]
  23. Lee S. K., Chou H., Ham T. S., Lee T. S., Keasling J. D.. ( 2008;). Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. . Curr Opin Biotechnol 19:, 556–563. [CrossRef][PubMed]
    [Google Scholar]
  24. Lyons L. B., Zinder N. D.. ( 1972;). The genetic map of the filamentous bacteriophage f1. . Virology 49:, 45–60. [CrossRef][PubMed]
    [Google Scholar]
  25. McClelland M., Sanderson K. E., Spieth J., Clifton S. W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M.. & other authors ( 2001;). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. . Nature 413:, 852–856. [CrossRef][PubMed]
    [Google Scholar]
  26. Ngu T. T., Lee J. A., Rushton M. K., Stillman M. J.. ( 2009;). Arsenic metalation of seaweed Fucus vesiculosus metallothionein: the importance of the interdomain linker in metallothionein. . Biochemistry 48:, 8806–8816. [CrossRef][PubMed]
    [Google Scholar]
  27. Pang A., Liang M., Prentice M. B., Pickersgill R. W.. ( 2012;). Substrate channels revealed in the trimeric Lactobacillus reuteri bacterial microcompartment shell protein PduB. . Acta Crystallogr D Biol Crystallogr 68:, 1642–1652. [CrossRef][PubMed]
    [Google Scholar]
  28. Parsons J. B., Dinesh S. D., Deery E., Leech H. K., Brindley A. A., Heldt D., Frank S., Smales C. M., Lünsdorf H.. & other authors ( 2008;). Biochemical and structural insights into bacterial organelle form and biogenesis. . J Biol Chem 283:, 14366–14375. [CrossRef][PubMed]
    [Google Scholar]
  29. Parsons J. B., Frank S., Bhella D., Liang M., Prentice M. B., Mulvihill D. P., Warren M. J.. ( 2010;). Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament-associated organelle movement. . Mol Cell 38:, 305–315. [CrossRef][PubMed]
    [Google Scholar]
  30. Sagermann M., Ohtaki A., Nikolakakis K.. ( 2009;). Crystal structure of the EutL shell protein of the ethanolamine ammonia lyase microcompartment. . Proc Natl Acad Sci U S A 106:, 8883–8887. [CrossRef][PubMed]
    [Google Scholar]
  31. Shively J. M., Ball F., Brown D. H., Saunders R. E.. ( 1973;). Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. . Science 182:, 584–586. [CrossRef][PubMed]
    [Google Scholar]
  32. Sinha S., Cheng S., Fan C., Bobik T. A.. ( 2012;). The PduM protein is a structural component of the microcompartments involved in coenzyme B(12)-dependent 1,2-propanediol degradation by Salmonella enterica. . J Bacteriol 194:, 1912–1918. [CrossRef][PubMed]
    [Google Scholar]
  33. So A. K., Espie G. S., Williams E. B., Shively J. M., Heinhorst S., Cannon G. C.. ( 2004;). A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. . J Bacteriol 186:, 623–630. [CrossRef][PubMed]
    [Google Scholar]
  34. Tabor S., Richardson C. C.. ( 1985;). A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. . Proc Natl Acad Sci U S A 82:, 1074–1078. [CrossRef][PubMed]
    [Google Scholar]
  35. Tanaka S., Kerfeld C. A., Sawaya M. R., Cai F., Heinhorst S., Cannon G. C., Yeates T. O.. ( 2008;). Atomic-level models of the bacterial carboxysome shell. . Science 319:, 1083–1086. [CrossRef][PubMed]
    [Google Scholar]
  36. Towbin H., Staehelin T., Gordon J.. ( 1979;). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. . Proc Natl Acad Sci U S A 76:, 4350–4354. [CrossRef][PubMed]
    [Google Scholar]
  37. Wheatley N. M., Gidaniyan S. D., Liu Y., Cascio D., Yeates T. O.. ( 2013;). Bacterial microcompartment shells of diverse functional types possess pentameric vertex proteins. . Protein Sci 22:, 660–665. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069922-0
Loading
/content/journal/micro/10.1099/mic.0.069922-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error