1887

Abstract

In general, prokaryotes are considered to be single-celled organisms that lack internal membrane-bound organelles. However, many bacteria produce proteinaceous microcompartments that serve a similar purpose, i.e. to concentrate specific enzymic reactions together or to shield the wider cytoplasm from toxic metabolic intermediates. In this paper, a synthetic operon encoding the key structural components of a microcompartment was designed based on the genes for the propanediol utilization (Pdu) microcompartment. The genes chosen included , -, -, -, -, - and -, and each was shown to produce protein in an chassis. In parallel, a set of compatible vectors designed to express non-native cargo proteins was also designed and tested. Engineered hexa-His tags allowed isolation of the components of the microcompartments together with co-expressed, untagged, cargo proteins. Finally, an protease accessibility assay suggested that a PduD–GFP fusion could be protected from proteolysis when co-expressed with the synthetic microcompartment operon. This work gives encouragement that it may be possible to harness the genes encoding a non-native microcompartment for future biotechnological applications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069922-0
2013-11-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2427.html?itemId=/content/journal/micro/10.1099/mic.0.069922-0&mimeType=html&fmt=ahah

References

  1. Bartolomé B., Jubete Y., Martínez E., de la Cruz F.( 1991). Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102:75–78 [View Article][PubMed]
    [Google Scholar]
  2. Blattner F. R., Plunkett G. III, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K.& other authors ( 1997). The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462 [View Article][PubMed]
    [Google Scholar]
  3. Bobik T. A., Havemann G. D., Busch R. J., Williams D. S., Aldrich H. C.( 1999). The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation. J Bacteriol 181:5967–5975[PubMed]
    [Google Scholar]
  4. Cheng S., Liu Y., Crowley C. S., Yeates T. O., Bobik T. A.( 2008). Bacterial microcompartments: their properties and paradoxes. Bioessays 30:1084–1095 [View Article][PubMed]
    [Google Scholar]
  5. Coulthurst S. J., Dawson A., Hunter W. N., Sargent F.( 2012). Conserved signal peptide recognition systems across the prokaryotic domains. Biochemistry 51:1678–1686 [View Article][PubMed]
    [Google Scholar]
  6. Crowley C. S., Sawaya M. R., Bobik T. A., Yeates T. O.( 2008). Structure of the PduU shell protein from the Pdu microcompartment of Salmonella. Structure 16:1324–1332 [View Article][PubMed]
    [Google Scholar]
  7. DeLisa M. P., Samuelson P., Palmer T., Georgiou G.( 2002). Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J Biol Chem 277:29825–29831 [View Article][PubMed]
    [Google Scholar]
  8. Fan C., Bobik T. A.( 2011). The N-terminal region of the medium subunit (PduD) packages adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu microcompartment. J Bacteriol 193:5623–5628 [View Article][PubMed]
    [Google Scholar]
  9. Fan C., Cheng S., Liu Y., Escobar C. M., Crowley C. S., Jefferson R. E., Yeates T. O., Bobik T. A.( 2010). Short N-terminal sequences package proteins into bacterial microcompartments. Proc Natl Acad Sci U S A 107:7509–7514 [View Article][PubMed]
    [Google Scholar]
  10. Fan C., Cheng S., Sinha S., Bobik T. A.( 2012). Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments. Proc Natl Acad Sci U S A 109:14995–15000 [View Article][PubMed]
    [Google Scholar]
  11. Frank S., Lawrence A. D., Prentice M. B., Warren M. J.( 2013). Bacterial microcompartments moving into a synthetic biological world. J Biotechnol 163:273–279 [View Article][PubMed]
    [Google Scholar]
  12. Havemann G. D., Bobik T. A.( 2003). Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. J Bacteriol 185:5086–5095 [View Article][PubMed]
    [Google Scholar]
  13. Iancu C. V., Ding H. J., Morris D. M., Dias D. P., Gonzales A. D., Martino A., Jensen G. J.( 2007). The structure of isolated Synechococcus strain WH8102 carboxysomes as revealed by electron cryotomography. J Mol Biol 372:764–773 [View Article][PubMed]
    [Google Scholar]
  14. Jack R. L., Buchanan G., Dubini A., Hatzixanthis K., Palmer T., Sargent F.( 2004). Coordinating assembly and export of complex bacterial proteins. EMBO J 23:3962–3972 [View Article][PubMed]
    [Google Scholar]
  15. Karzai A. W., Roche E. D., Sauer R. T.( 2000). The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 7:449–455 [View Article][PubMed]
    [Google Scholar]
  16. Keasling J. D.( 2008). Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76 [View Article][PubMed]
    [Google Scholar]
  17. Keiler K. C., Waller P. R., Sauer R. T.( 1996). Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271:990–993 [View Article][PubMed]
    [Google Scholar]
  18. Kerfeld C. A., Sawaya M. R., Tanaka S., Nguyen C. V., Phillips M., Beeby M., Yeates T. O.( 2005). Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938 [View Article][PubMed]
    [Google Scholar]
  19. Kerfeld C. A., Heinhorst S., Cannon G. C.( 2010). Bacterial microcompartments. Annu Rev Microbiol 64:391–408 [View Article][PubMed]
    [Google Scholar]
  20. Kofoid E., Rappleye C., Stojiljkovic I., Roth J.( 1999). The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol 181:5317–5329[PubMed]
    [Google Scholar]
  21. Komine Y., Kitabatake M., Yokogawa T., Nishikawa K., Inokuchi H.( 1994). A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci U S A 91:9223–9227 [View Article][PubMed]
    [Google Scholar]
  22. Laemmli U. K.( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  23. Lee S. K., Chou H., Ham T. S., Lee T. S., Keasling J. D.( 2008). Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563 [View Article][PubMed]
    [Google Scholar]
  24. Lyons L. B., Zinder N. D.( 1972). The genetic map of the filamentous bacteriophage f1. Virology 49:45–60 [View Article][PubMed]
    [Google Scholar]
  25. McClelland M., Sanderson K. E., Spieth J., Clifton S. W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M.& other authors ( 2001). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856 [View Article][PubMed]
    [Google Scholar]
  26. Ngu T. T., Lee J. A., Rushton M. K., Stillman M. J.( 2009). Arsenic metalation of seaweed Fucus vesiculosus metallothionein: the importance of the interdomain linker in metallothionein. Biochemistry 48:8806–8816 [View Article][PubMed]
    [Google Scholar]
  27. Pang A., Liang M., Prentice M. B., Pickersgill R. W.( 2012). Substrate channels revealed in the trimeric Lactobacillus reuteri bacterial microcompartment shell protein PduB. Acta Crystallogr D Biol Crystallogr 68:1642–1652 [View Article][PubMed]
    [Google Scholar]
  28. Parsons J. B., Dinesh S. D., Deery E., Leech H. K., Brindley A. A., Heldt D., Frank S., Smales C. M., Lünsdorf H.& other authors ( 2008). Biochemical and structural insights into bacterial organelle form and biogenesis. J Biol Chem 283:14366–14375 [View Article][PubMed]
    [Google Scholar]
  29. Parsons J. B., Frank S., Bhella D., Liang M., Prentice M. B., Mulvihill D. P., Warren M. J.( 2010). Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament-associated organelle movement. Mol Cell 38:305–315 [View Article][PubMed]
    [Google Scholar]
  30. Sagermann M., Ohtaki A., Nikolakakis K.( 2009). Crystal structure of the EutL shell protein of the ethanolamine ammonia lyase microcompartment. Proc Natl Acad Sci U S A 106:8883–8887 [View Article][PubMed]
    [Google Scholar]
  31. Shively J. M., Ball F., Brown D. H., Saunders R. E.( 1973). Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182:584–586 [View Article][PubMed]
    [Google Scholar]
  32. Sinha S., Cheng S., Fan C., Bobik T. A.( 2012). The PduM protein is a structural component of the microcompartments involved in coenzyme B(12)-dependent 1,2-propanediol degradation by Salmonella enterica. J Bacteriol 194:1912–1918 [View Article][PubMed]
    [Google Scholar]
  33. So A. K., Espie G. S., Williams E. B., Shively J. M., Heinhorst S., Cannon G. C.( 2004). A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J Bacteriol 186:623–630 [View Article][PubMed]
    [Google Scholar]
  34. Tabor S., Richardson C. C.( 1985). A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82:1074–1078 [View Article][PubMed]
    [Google Scholar]
  35. Tanaka S., Kerfeld C. A., Sawaya M. R., Cai F., Heinhorst S., Cannon G. C., Yeates T. O.( 2008). Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086 [View Article][PubMed]
    [Google Scholar]
  36. Towbin H., Staehelin T., Gordon J.( 1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354 [View Article][PubMed]
    [Google Scholar]
  37. Wheatley N. M., Gidaniyan S. D., Liu Y., Cascio D., Yeates T. O.( 2013). Bacterial microcompartment shells of diverse functional types possess pentameric vertex proteins. Protein Sci 22:660–665 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069922-0
Loading
/content/journal/micro/10.1099/mic.0.069922-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error