1887

Abstract

The type strain ATCC 14579 harbours pBClin15, a linear plasmid with similar genome organization to tectiviruses. Since phage morphogenesis is not known to occur it has been suggested that pBClin15 may be a defect relic of a tectiviral prophage without relevance for the bacterial physiology. However, in this paper, we demonstrate that a pBClin15-cured strain is more tolerant to antibiotics interfering with DNA integrity than the WT strain. Growth in the presence of crystal violet or the quinolones nalidixic acid, norfloxacin or ciprofloxacin resulted in aggregation and lysis of the WT strain, whereas the pBClin15-cured strain was unaffected. Microarray analysis comparing the gene expression in the WT and pBClin15-cured strains showed that pBClin15 gene expression was strongly upregulated in response to norfloxacin stress, and coincided with lysis and aggregation of the WT strain. The aggregating bacteria experienced a significant survival benefit compared with the planktonic counterparts in the presence of norfloxacin. There was no difference between the WT and pBClin15-cured strains during growth in the absence of norfloxacin, the pBClin15 genes were moderately expressed, and no effect was observed on chromosomal gene expression. These data demonstrate for the first time that although pBClin15 may be a remnant of a temperate phage, it negatively affects the DNA stress tolerance of ATCC 14579. Furthermore, our results warrant a recommendation to always verify the presence of pBClin15 following genetic manipulation of ATCC 14579.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069674-0
2013-11-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2283.html?itemId=/content/journal/micro/10.1099/mic.0.069674-0&mimeType=html&fmt=ahah

References

  1. Ackermann H. W., Roy R., Martin M., Murthy M. R., Smirnoff W. A..( 1978;). Partial characterization of a cubic Bacillus phage. Can J Microbiol24:986–993 [CrossRef][PubMed]
    [Google Scholar]
  2. Balaban N. Q., Merrin J., Chait R., Kowalik L., Leibler S..( 2004;). Bacterial persistence as a phenotypic switch. Science305:1622–1625 [CrossRef][PubMed]
    [Google Scholar]
  3. Beloin C., Valle J., Latour-Lambert P., Faure P., Kzreminski M., Balestrino D., Haagensen J. A., Molin S., Prensier G. et al.( 2004;). Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol51:659–674 [CrossRef][PubMed]
    [Google Scholar]
  4. Bishop-Lilly K. A., Plaut R. D., Chen P. E., Akmal A., Willner K. M., Butani A., Dorsey S., Mokashi V., Mateczun A. J. et al.( 2012;). Whole genome sequencing of phage resistant Bacillus anthracis mutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption. Virol J9:246 [CrossRef][PubMed]
    [Google Scholar]
  5. Brissette J. L., Russel M., Weiner L., Model P..( 1990;). Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci U S A87:862–866 [CrossRef][PubMed]
    [Google Scholar]
  6. Butala M., Zgur-Bertok D., Busby S. J..( 2009;). The bacterial LexA transcriptional repressor. Cell Mol Life Sci66:82–93 [CrossRef][PubMed]
    [Google Scholar]
  7. Carlson C. R., Johansen T., Kolstø A. B..( 1996;). The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579. FEMS Microbiol Lett141:163–167 [CrossRef][PubMed]
    [Google Scholar]
  8. Chai Y., Chu F., Kolter R., Losick R..( 2008;). Bistability and biofilm formation in Bacillus subtilis. Mol Microbiol67:254–263 [CrossRef][PubMed]
    [Google Scholar]
  9. Champoux J. J..( 2001;). DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem70:369–413 [CrossRef][PubMed]
    [Google Scholar]
  10. Darwin A. J..( 2005;). The phage-shock-protein response. Mol Microbiol57:621–628 [CrossRef][PubMed]
    [Google Scholar]
  11. Diver J. M..( 1989;). Quinolone uptake by bacteria and bacterial killing. Rev Infect Dis11:Suppl. 5S941–S946 [CrossRef][PubMed]
    [Google Scholar]
  12. Docampo R., Moreno S. N..( 1990;). The metabolism and mode of action of gentian violet. Drug Metab Rev22:161–178 [CrossRef][PubMed]
    [Google Scholar]
  13. Dörr T., Lewis K., Vulić M..( 2009;). SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet5:e1000760 [CrossRef][PubMed]
    [Google Scholar]
  14. Drlica K..( 1999;). Mechanism of fluoroquinolone action. Curr Opin Microbiol2:504–508 [CrossRef][PubMed]
    [Google Scholar]
  15. Drlica K., Malik M., Kerns R. J., Zhao X..( 2008;). Quinolone-mediated bacterial death. Antimicrob Agents Chemother52:385–392 [CrossRef][PubMed]
    [Google Scholar]
  16. Drlica K., Hiasa H., Kerns R., Malik M., Mustaev A., Zhao X..( 2009;). Quinolones: action and resistance updated. Curr Top Med Chem9:981–998 [CrossRef][PubMed]
    [Google Scholar]
  17. Fornelos N., Bamford J. K., Mahillon J..( 2011;). Phage-borne factors and host LexA regulate the lytic switch in phage GIL01. J Bacteriol193:6008–6019 [CrossRef][PubMed]
    [Google Scholar]
  18. Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y. et al.( 2004;). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol5:R80 [CrossRef][PubMed]
    [Google Scholar]
  19. Gohar M., Faegri K., Perchat S., Ravnum S., Økstad O. A., Gominet M., Kolstø A. B., Lereclus D..( 2008;). The PlcR virulence regulon of Bacillus cereus.. PLoS ONE3:e2793 [CrossRef][PubMed]
    [Google Scholar]
  20. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N. et al.( 2003;). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature423:87–91 [CrossRef][PubMed]
    [Google Scholar]
  21. Janes B. K., Stibitz S..( 2006;). Routine markerless gene replacement in Bacillus anthracis. Infect Immun74:1949–1953 [CrossRef][PubMed]
    [Google Scholar]
  22. Kearns D. B., Chu F., Rudner R., Losick R..( 2004;). Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol52:357–369 [CrossRef][PubMed]
    [Google Scholar]
  23. Kotiranta A., Haapasalo M., Kari K., Kerosuo E., Olsen I., Sorsa T., Meurman J. H., Lounatmaa K..( 1998;). Surface structure, hydrophobicity, phagocytosis, and adherence to matrix proteins of Bacillus cereus cells with and without the crystalline surface protein layer. Infect Immun66:4895–4902[PubMed]
    [Google Scholar]
  24. Lewis K..( 2007;). Persister cells, dormancy and infectious disease. Nat Rev Microbiol5:48–56 [CrossRef][PubMed]
    [Google Scholar]
  25. Lopez D., Vlamakis H., Kolter R..( 2009;). Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev33:152–163 [CrossRef][PubMed]
    [Google Scholar]
  26. Love P. E., Yasbin R. E..( 1984;). Genetic characterization of the inducible SOS-like system of Bacillus subtilis. J Bacteriol160:910–920[PubMed]
    [Google Scholar]
  27. Maamar H., Dubnau D..( 2005;). Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol56:615–624 [CrossRef][PubMed]
    [Google Scholar]
  28. Mignot T., Denis B., Couture-Tosi E., Kolstø A. B., Mock M., Fouet A..( 2001;). Distribution of S-layers on the surface of Bacillus cereus strains: phylogenetic origin and ecological pressure. Environ Microbiol3:493–501 [CrossRef][PubMed]
    [Google Scholar]
  29. Nagy E..( 1974;). A highly specific phage attacking Bacillus anthracis strain Sterne. Acta Microbiol Acad Sci Hung21:257–263[PubMed]
    [Google Scholar]
  30. Nagy E., Ivánovics G..( 1977;). Association of probable defective phage particles with lysis by bacteriophage AP50 in Bacillus anthracis. J Gen Microbiol102:215–219 [CrossRef][PubMed]
    [Google Scholar]
  31. O’Toole G., Kaplan H. B., Kolter R..( 2000;). Biofilm formation as microbial development. Annu Rev Microbiol54:49–79 [CrossRef][PubMed]
    [Google Scholar]
  32. Olsen R. H., Siak J. S., Gray R. H..( 1974;). Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage. J Virol14:689–699[PubMed]
    [Google Scholar]
  33. Shah D., Zhang Z., Khodursky A., Kaldalu N., Kurg K., Lewis K..( 2006;). Persisters: a distinct physiological state of E. coli. BMC Microbiol6:53 [CrossRef][PubMed]
    [Google Scholar]
  34. Simmons L. A., Goranov A. I., Kobayashi H., Davies B. W., Yuan D. S., Grossman A. D., Walker G. C..( 2009;). Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. J Bacteriol191:1152–1161 [CrossRef][PubMed]
    [Google Scholar]
  35. Smyth G. K..( 2005;). Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions Using R and Bioconductor397–420 Gentleman V. C. R., Dudoit S., Irizarry R., Huber W.. Berlin: Springer; [CrossRef]
    [Google Scholar]
  36. Sozhamannan S., McKinstry M., Lentz S. M., Jalasvuori M., McAfee F., Smith A., Dabbs J., Ackermann H. W., Bamford J. K. et al.( 2008;). Molecular characterization of a variant of Bacillus anthracis-specific phage AP50 with improved bacteriolytic activity. Appl Environ Microbiol74:6792–6796 [CrossRef][PubMed]
    [Google Scholar]
  37. Stabell F. B., Egge-Jacobsen W., Risøen P. A., Kolstø A. B., Økstad O. A..( 2009;). ORF 2 from the Bacillus cereus linear plasmid pBClin15 encodes a DNA binding protein. Lett Appl Microbiol48:51–57 [CrossRef][PubMed]
    [Google Scholar]
  38. Strömsten N. J., Benson S. D., Burnett R. M., Bamford D. H., Bamford J. K..( 2003;). The Bacillus thuringiensis linear double-stranded DNA phage Bam35, which is highly similar to the Bacillus cereus linear plasmid pBClin15, has a prophage state. J Bacteriol185:6985–6989 [CrossRef][PubMed]
    [Google Scholar]
  39. Veening J. W., Hamoen L. W., Kuipers O. P..( 2005;). Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol Microbiol56:1481–1494 [CrossRef][PubMed]
    [Google Scholar]
  40. Verheust C., Jensen G., Mahillon J..( 2003;). pGIL01, a linear tectiviral plasmid prophage originating from Bacillus thuringiensis serovar israelensis. Microbiology149:2083–2092 [CrossRef][PubMed]
    [Google Scholar]
  41. Verheust C., Fornelos N., Mahillon J..( 2004;). The Bacillus thuringiensis phage GIL01 encodes two enzymes with peptidoglycan hydrolase activity. FEMS Microbiol Lett237:289–295[PubMed]
    [Google Scholar]
  42. Verheust C., Fornelos N., Mahillon J..( 2005;). GIL16, a new gram-positive tectiviral phage related to the Bacillus thuringiensis GIL01 and the Bacillus cereus pBClin15 elements. J Bacteriol187:1966–1973 [CrossRef][PubMed]
    [Google Scholar]
  43. Vilain S., Pretorius J. M., Theron J., Brözel V. S..( 2009;). DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol75:2861–2868 [CrossRef][PubMed]
    [Google Scholar]
  44. Wakelin L. P., Adams A., Hunter C., Waring M. J..( 1981;). Interaction of crystal violet with nucleic acids. Biochemistry20:5779–5787 [CrossRef][PubMed]
    [Google Scholar]
  45. Wolfe A. D..( 1977;). Influence of cationic triphenylmethane dyes upon DNA polymerization and product hydrolysis by Escherichia coli polymerase I. Biochemistry16:30–33 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069674-0
Loading
/content/journal/micro/10.1099/mic.0.069674-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error