1887

Abstract

Motility driven by rotational movement of flagella allows bacteria and archaea to seek favourable conditions and escape toxic ones. However, archaeal flagella share structural similarities with bacterial type IV pili rather than bacterial flagella. The genome contains two flagellin genes, and . While FlgA1 has been shown to be a major flagellin, the function of FlgA2 is elusive. In this study, it was determined that although FlgA2 by itself does not confer motility to non-motile Δ, a subset of these mutant cells contains a flagellum. Consistent with FlgA2 being assembled into functional flagella, FlgA1 expressed from a plasmid can only complement a Δ strain when co-expressed with chromosomal or plasmid-encoded FlgA2. Surprisingly, a mutant strain lacking FlgA2, but expressing chromosomally encoded FlgA1, is hypermotile, a phenotype that is accompanied by an increased number of flagella per cell, as well as an increased flagellum length. Site-directed mutagenesis resulting in early translational termination of suggests that the hypermotility of the Δ strain is not due to transcriptional regulation. This, and the fact that plasmid-encoded FlgA2 expression in a Δ strain does not reduce its hypermotility, suggests a possible regulatory role for FlgA2 that depends on the relative abundance of FlgA1. Taken together, our results indicate that FlgA2 plays both structural and regulatory roles in flagella-dependent motility. Future studies will build upon the data presented here to elucidate the significance of the hypermotility of this Δ mutant, and will illuminate the regulation and function of archaeal flagella.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069617-0
2013-11-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2249.html?itemId=/content/journal/micro/10.1099/mic.0.069617-0&mimeType=html&fmt=ahah

References

  1. Alam M., Oesterhelt D..( 1984;). Morphology, function and isolation of halobacterial flagella. J Mol Biol176:459–475 [CrossRef][PubMed]
    [Google Scholar]
  2. Albers S. V., Pohlschröder M..( 2009;). Diversity of archaeal type IV pilin-like structures. Extremophiles13:403–410 [CrossRef][PubMed]
    [Google Scholar]
  3. Albers S. V., Szabó Z., Driessen A. J..( 2003;). Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J Bacteriol185:3918–3925 [CrossRef][PubMed]
    [Google Scholar]
  4. Allers T., Ngo H. P..( 2003;). Genetic analysis of homologous recombination in Archaea: Haloferax volcanii as a model organism. Biochem Soc Trans31:706–710 [CrossRef][PubMed]
    [Google Scholar]
  5. Allers T., Ngo H. P., Mevarech M., Lloyd R. G..( 2004;). Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl Environ Microbiol70:943–953 [CrossRef][PubMed]
    [Google Scholar]
  6. Allers T., Barak S., Liddell S., Wardell K., Mevarech M..( 2010;). Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii. Appl Environ Microbiol76:1759–1769 [CrossRef][PubMed]
    [Google Scholar]
  7. Banerjee A., Ghosh A., Mills D. J., Kahnt J., Vonck J., Albers S. V..( 2012;). FlaX, a unique component of the crenarchaeal archaellum, forms oligomeric ring-shaped structures and interacts with the motor ATPase FlaI. J Biol Chem287:43322–43330 [CrossRef][PubMed]
    [Google Scholar]
  8. Bardy S. L., Jarrell K. F..( 2002;). FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol Lett208:53–59 [CrossRef][PubMed]
    [Google Scholar]
  9. Bardy S. L., Jarrell K. F..( 2003;). Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Mol Microbiol50:1339–1347 [CrossRef][PubMed]
    [Google Scholar]
  10. Bardy S. L., Mori T., Komoriya K., Aizawa S., Jarrell K. F..( 2002;). Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus voltae. J Bacteriol184:5223–5233 [CrossRef][PubMed]
    [Google Scholar]
  11. Berg H. C..( 2003;). The rotary motor of bacterial flagella. Annu Rev Biochem72:19–54 [CrossRef][PubMed]
    [Google Scholar]
  12. Beznosov S. N., Piatibratov M. G., Fedorov O. V..( 2007;). [Multicomponent nature of Halobacterium salinarum flagella]. Mikrobiologiia76:494–501[PubMed]
    [Google Scholar]
  13. Blattner F. R., Williams B. G., Blechl A. E., Denniston-Thompson K., Faber H. E., Furlong L., Grunwald D. J., Kiefer D. O., Moore D. D. et al.( 1977;). Charon phages: safer derivatives of bacteriophage lambda for DNA cloning. Science196:161–169 [CrossRef][PubMed]
    [Google Scholar]
  14. Blyn L. B., Braaten B. A., Low D. A..( 1990;). Regulation of pap pilin phase variation by a mechanism involving differential dam methylation states. EMBO J9:4045–4054[PubMed]
    [Google Scholar]
  15. Chaban B., Ng S. Y., Kanbe M., Saltzman I., Nimmo G., Aizawa S., Jarrell K. F..( 2007;). Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis. Mol Microbiol66:596–609 [CrossRef][PubMed]
    [Google Scholar]
  16. Cohen-Krausz S., Trachtenberg S..( 2008;). The flagellar filament structure of the extreme acidothermophile Sulfolobus shibatae B12 suggests that archaeabacterial flagella have a unique and common symmetry and design. J Mol Biol375:1113–1124 [CrossRef][PubMed]
    [Google Scholar]
  17. Craig L., Volkmann N., Arvai A. S., Pique M. E., Yeager M., Egelman E. H., Tainer J. A..( 2006;). Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol Cell23:651–662 [CrossRef][PubMed]
    [Google Scholar]
  18. Durand E., Michel G., Voulhoux R., Kürner J., Bernadac A., Filloux A..( 2005;). XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus. J Biol Chem280:31378–31389 [CrossRef][PubMed]
    [Google Scholar]
  19. Dyall-Smith M..( 2008;). The Halohandbook: Protocols for Haloarchaeal Genetics. http://www.haloarchaea.com/resources/halohandbook/Halohandbook_2008_v7.pdf
    [Google Scholar]
  20. Fedorov O. V., Pyatibratov M. G., Kostyukova A. S., Osina N. K., Tarasov V. Y..( 1994;). Protofilament as a structural element of flagella of haloalkalophilic archaebacteria. Can J Microbiol40:45–53 [CrossRef]
    [Google Scholar]
  21. Ghosh A., Albers S. V..( 2011;). Assembly and function of the archaeal flagellum. Biochem Soc Trans39:64–69 [CrossRef][PubMed]
    [Google Scholar]
  22. Ghosh A., Hartung S., van der Does C., Tainer J. A., Albers S. V..( 2011;). Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding. Biochem J437:43–52 [CrossRef][PubMed]
    [Google Scholar]
  23. Giltner C. L., Habash M., Burrows L. L..( 2010;). Pseudomonas aeruginosa minor pilins are incorporated into type IV pili. J Mol Biol398:444–461 [CrossRef][PubMed]
    [Google Scholar]
  24. Giltner C. L., Nguyen Y., Burrows L. L..( 2012;). Type IV pilin proteins: versatile molecular modules. Microbiol Mol Biol Rev76:740–772 [CrossRef][PubMed]
    [Google Scholar]
  25. Hammelmann M., Soppa J..( 2008;). Optimized generation of vectors for the construction of Haloferax volcanii deletion mutants. J Microbiol Methods75:201–204 [CrossRef][PubMed]
    [Google Scholar]
  26. Herzog B., Wirth R..( 2012;). Swimming behavior of selected species of Archaea. Appl Environ Microbiol78:1670–1674 [CrossRef][PubMed]
    [Google Scholar]
  27. Jarrell K. F., Albers S. V..( 2012;). The archaellum: an old motility structure with a new name. Trends Microbiol20:307–312 [CrossRef][PubMed]
    [Google Scholar]
  28. Jarrell K. F., Koval S. F..( 1989;). Ultrastructure and biochemistry of Methanococcus voltae. Crit Rev Microbiol17:53–87 [CrossRef][PubMed]
    [Google Scholar]
  29. Jarrell K. F., McBride M. J..( 2008;). The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol6:466–476 [CrossRef][PubMed]
    [Google Scholar]
  30. Jarrell K. F., Bayley D. P., Florian V., Klein A..( 1996;). Isolation and characterization of insertional mutations in flagellin genes in the archaeon Methanococcus voltae. Mol Microbiol20:657–666 [CrossRef][PubMed]
    [Google Scholar]
  31. Jones C. J., Aizawa S..( 1991;). The bacterial flagellum and flagellar motor: structure, assembly and function. Adv Microb Physiol32:109–172 [CrossRef][PubMed]
    [Google Scholar]
  32. Lassak K., Ghosh A., Albers S. V..( 2012a;). Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures. Res Microbiol163:630–644 [CrossRef][PubMed]
    [Google Scholar]
  33. Lassak K., Neiner T., Ghosh A., Klingl A., Wirth R., Albers S. V..( 2012b;). Molecular analysis of the crenarchaeal flagellum. Mol Microbiol83:110–124 [CrossRef][PubMed]
    [Google Scholar]
  34. Marwan W., Alam M., Oesterhelt D..( 1991;). Rotation and switching of the flagellar motor assembly in Halobacterium halobium. J Bacteriol173:1971–1977[PubMed]
    [Google Scholar]
  35. Ng S. Y., Zolghadr B., Driessen A. J., Albers S. V., Jarrell K. F..( 2008;). Cell surface structures of archaea. J Bacteriol190:6039–6047 [CrossRef][PubMed]
    [Google Scholar]
  36. Pohlschroder M., Ghosh A., Tripepi M., Albers S. V..( 2011;). Archaeal type IV pilus-like structures–evolutionarily conserved prokaryotic surface organelles. Curr Opin Microbiol14:357–363 [CrossRef][PubMed]
    [Google Scholar]
  37. Reindl S., Ghosh A., Williams G. J., Lassak K., Neiner T., Henche A. L., Albers S. V., Tainer J. A..( 2013;). Insights into FlaI functions in archaeal motor assembly and motility from structures, conformations, and genetics. Mol Cell49:1069–1082 [CrossRef][PubMed]
    [Google Scholar]
  38. Senesi S., Ghelardi E., Celandroni F., Salvetti S., Parisio E., Galizzi A..( 2004;). Surface-associated flagellum formation and swarming differentiation in Bacillus subtilis are controlled by the ifm locus. J Bacteriol186:1158–1164 [CrossRef][PubMed]
    [Google Scholar]
  39. Siutkin A. S., Piatibratov M. G., Beznosov S. N., Fedorov O. V..( 2012;). [Various mechanisms of flagella helicity formation in Haloarchaea]. Mikrobiologiia81:620–629[PubMed]
    [Google Scholar]
  40. Soppa J., Baumann A., Brenneis M., Dambeck M., Hering O., Lange C..( 2008;). Genomics and functional genomics with Haloarchaea. Arch Microbiol190:197–215 [CrossRef][PubMed]
    [Google Scholar]
  41. Streif S., Staudinger W. F., Marwan W., Oesterhelt D..( 2008;). Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. J Mol Biol384:1–8 [CrossRef][PubMed]
    [Google Scholar]
  42. Szabó Z., Stahl A. O., Albers S. V., Kissinger J. C., Driessen A. J., Pohlschröder M..( 2007;). Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J Bacteriol189:772–778 [CrossRef][PubMed]
    [Google Scholar]
  43. Tarasov V. Y., Pyatibratov M. G., Tang S. L., Dyall-Smith M., Fedorov O. V..( 2000;). Role of flagellins from A and B loci in flagella formation of Halobacterium salinarum. Mol Microbiol35:69–78 [CrossRef][PubMed]
    [Google Scholar]
  44. Thomas N. A., Jarrell K. F..( 2001;). Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins. J Bacteriol183:7154–7164 [CrossRef][PubMed]
    [Google Scholar]
  45. Thomas N. A., Bardy S. L., Jarrell K. F..( 2001;). The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol Rev25:147–174 [CrossRef][PubMed]
    [Google Scholar]
  46. Trachtenberg S., Cohen-Krausz S..( 2006;). The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure. J Mol Microbiol Biotechnol11:208–220 [CrossRef][PubMed]
    [Google Scholar]
  47. Tripepi M., Imam S., Pohlschröder M..( 2010;). Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion. J Bacteriol192:3093–3102 [CrossRef][PubMed]
    [Google Scholar]
  48. Tripepi M., You J., Temel S., Önder O., Brisson D., Pohlschröder M..( 2012;). N-glycosylation of Haloferax volcanii flagellins requires known Agl proteins and is essential for biosynthesis of stable flagella. J Bacteriol194:4876–4887 [CrossRef][PubMed]
    [Google Scholar]
  49. Wirth R..( 2012;). Response to Jarrell and Albers: seven letters less does not say more. Trends Microbiol20:511–512 [CrossRef][PubMed]
    [Google Scholar]
  50. Yanisch-Perron C., Vieira J., Messing J..( 1985;). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069617-0
Loading
/content/journal/micro/10.1099/mic.0.069617-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error