1887

Abstract

A putative prenyltransferase gene, NFIA_043650, was amplified from NRRL 181 and cloned into the expression vector pQE60. The deduced polypeptide consisting of 445 amino acids with a molecular mass of 51 kDa was overproduced in and purified as His-tagged protein to near homogeneity. The purified soluble protein was subsequently assayed with potential aromatic substrates in the presence of dimethylallyl diphosphate. HPLC analysis of the reaction mixtures revealed acceptance of all tested tryptophan-containing cyclic dipeptides. Isolation and structural elucidation of enzyme products of five selected substrates indicated a reverse C2-prenylation on the indole nucleus, proving the enzyme to be a yclic ipetide -renylransferase (CdpC2PT). Differing significantly from two known brevianamide F reverse C2-prenyltransferases NotF and BrePT which use cyclo--Trp--Pro as their preferred substrate, CdpC2PT showed a clear substrate preference for ()-benzodiazepinedinone and cyclo--Trp--Trp with values of 84.1 and 165.2 µM and turnover numbers at 0.63 and 0.30 s, respectively. A possible role of CdpC2PT in the biosynthesis of fellutanines is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069542-0
2013-10-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2169.html?itemId=/content/journal/micro/10.1099/mic.0.069542-0&mimeType=html&fmt=ahah

References

  1. Ames B. D., Walsh C. T.. ( 2010;). Anthranilate-activating modules from fungal nonribosomal peptide assembly lines. Biochemistry49:3351–3365 [CrossRef][PubMed]
    [Google Scholar]
  2. Bonitz T., Alva V., Saleh O., Lupas A. N., Heide L.. ( 2011;). Evolutionary relationships of microbial aromatic prenyltransferases. PLoS ONE6:e27336 [CrossRef][PubMed]
    [Google Scholar]
  3. Brakhage A. A.. ( 2013;). Regulation of fungal secondary metabolism. Nat Rev Microbiol11:21–32 [CrossRef][PubMed]
    [Google Scholar]
  4. Chooi Y. H., Wang P., Fang J., Li Y., Wu K., Wang P., Tang Y.. ( 2012;). Discovery and characterization of a group of fungal polycyclic polyketide prenyltransferases. J Am Chem Soc134:9428–9437 [CrossRef][PubMed]
    [Google Scholar]
  5. Chooi Y.-H., Fang J., Liu H., Filler S. G., Wang P., Tang Y.. ( 2013;). Genome mining of a prenylated and immunosuppressive polyketide from pathogenic fungi. Org Lett15:780–783 [CrossRef][PubMed]
    [Google Scholar]
  6. Ding Y., de Wet J. R., Cavalcoli J., Li S., Greshock T. J., Miller K. A., Finefield J. M., Sunderhaus J. D., McAfoos T. J.. & other authors ( 2010;). Genome-based characterization of two prenylation steps in the assembly of the stephacidin and notoamide anticancer agents in a marine-derived Aspergillus sp. J Am Chem Soc132:12733–12740 [CrossRef][PubMed]
    [Google Scholar]
  7. Grundmann A., Li S.-M.. ( 2005;). Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus. . Microbiology151:2199–2207 [CrossRef][PubMed]
    [Google Scholar]
  8. Harrison D. M., Quinn P.. ( 1983;). The biosynthesis of echinulin: origins of the diastereotopic methyls in the 1,1-dimethylallyl group. J Chem Soc Chem Commun16:879–880 [CrossRef]
    [Google Scholar]
  9. Heide L.. ( 2009;). Prenyl transfer to aromatic substrates: genetics and enzymology. Curr Opin Chem Biol13:171–179 [CrossRef][PubMed]
    [Google Scholar]
  10. Khaldi N., Seifuddin F. T., Turner G., Haft D., Nierman W. C., Wolfe K. H., Fedorova N. D.. ( 2010;). SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol47:736–741 [CrossRef][PubMed]
    [Google Scholar]
  11. Kozlovsky A. G., Vinokurova N. G., Adanin V. M., Burkhardt G., Dahse H. M., Gräfe U.. ( 2000;). New diketopiperazine alkaloids from Penicillium fellutanum. . J Nat Prod63:698–700 [CrossRef][PubMed]
    [Google Scholar]
  12. Kozlovsky A. G., Vinokurova N. G., Adanin V. M., Burkhardt G., Dahse H.-M., Gräfe U.. ( 2001;). New diketopiperazine alkaloids from Penicillium fellutanum. . J Nat Prod64:553–554 [CrossRef][PubMed]
    [Google Scholar]
  13. Kremer A., Li S.-M.. ( 2008;). Potential of a 7-dimethylallyltryptophan synthase as a tool for production of prenylated indole derivatives. Appl Microbiol Biotechnol79:951–961 [CrossRef][PubMed]
    [Google Scholar]
  14. Kremer A., Li S.-M.. ( 2010;). A tyrosine O-prenyltransferase catalyses the first pathway-specific step in the biosynthesis of sirodesmin PL. Microbiology156:278–286 [CrossRef][PubMed]
    [Google Scholar]
  15. Kremer A., Westrich L., Li S.-M.. ( 2007;). A 7-dimethylallyltryptophan synthase from Aspergillus fumigatus: overproduction, purification and biochemical characterization. Microbiology153:3409–3416 [CrossRef][PubMed]
    [Google Scholar]
  16. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  17. Li S.-M.. ( 2010;). Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep27:57–78 [CrossRef][PubMed]
    [Google Scholar]
  18. Li S.-M.. ( 2011;). Genome mining and biosynthesis of fumitremorgin-type alkaloids in ascomycetes. J Antibiot (Tokyo)64:45–49 [CrossRef][PubMed]
    [Google Scholar]
  19. Liang P. H.. ( 2009;). Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry48:6562–6570 [CrossRef][PubMed]
    [Google Scholar]
  20. Liu C., Noike M., Minami A., Oikawa H., Dairi T.. ( 2013;). Functional analysis of a prenyltransferase gene (paxD) in the paxilline biosynthetic gene cluster. Appl Microbiol Biotechnol[PubMed]
    [Google Scholar]
  21. Lorenz K., Hoseney R. C.. ( 1979;). Ergot on cereal grains. CRC Crit Rev Food Sci Nutr11:311–354 [CrossRef][PubMed]
    [Google Scholar]
  22. Maiya S., Grundmann A., Li S.-M., Turner G.. ( 2006;). The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. ChemBioChem7:1062–1069 [CrossRef][PubMed]
    [Google Scholar]
  23. Mundt K., Wollinsky B., Ruan H. L., Zhu T., Li S.-M.. ( 2012;). Identification of the verruculogen prenyltransferase FtmPT3 by a combination of chemical, bioinformatic and biochemical approaches. ChemBioChem13:2583–2592 [CrossRef][PubMed]
    [Google Scholar]
  24. Noike M., Liu C., Ono Y., Hamano Y., Toyomasu T., Sassa T., Kato N., Dairi T.. ( 2012;). An enzyme catalyzing O-prenylation of the glucose moiety of fusicoccin A, a diterpene glucoside produced by the fungus Phomopsis amygdali. . ChemBioChem13:566–573 [CrossRef][PubMed]
    [Google Scholar]
  25. Pockrandt D., Ludwig L., Fan A., König G. M., Li S. M.. ( 2012;). New insights into the biosynthesis of prenylated xanthones: Xptb from Aspergillus nidulans catalyses an O-prenylation of xanthones. ChemBioChem13:2764–2771 [CrossRef][PubMed]
    [Google Scholar]
  26. Prieto C., García-Estrada C., Lorenzana D., Martín J. F.. ( 2012;). NRPSsp: non-ribosomal peptide synthase substrate predictor. Bioinformatics28:426–427 [CrossRef][PubMed]
    [Google Scholar]
  27. Röttig M., Medema M. H., Blin K., Weber T., Rausch C., Kohlbacher O.. ( 2011;). NRPSpredictor2–a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res39:Suppl. 2W362–W367 [CrossRef][PubMed]
    [Google Scholar]
  28. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  29. Schuller J. M., Zocher G., Liebhold M., Xie X., Stahl M., Li S.-M., Stehle T.. ( 2012;). Structure and catalytic mechanism of a cyclic dipeptide prenyltransferase with broad substrate promiscuity. J Mol Biol422:87–99 [CrossRef][PubMed]
    [Google Scholar]
  30. Steffan N., Li S.-M.. ( 2009;). Increasing structure diversity of prenylated diketopiperazine derivatives by using a 4-dimethylallyltryptophan synthase. Arch Microbiol191:461–466 [CrossRef][PubMed]
    [Google Scholar]
  31. Steffan N., Unsöld I. A., Li S.-M.. ( 2007;). Chemoenzymatic synthesis of prenylated indole derivatives by using a 4-dimethylallyltryptophan synthase from Aspergillus fumigatus. . ChemBioChem8:1298–1307 [CrossRef][PubMed]
    [Google Scholar]
  32. Steffan N., Grundmann A., Yin W.-B., Kremer A., Li S.-M.. ( 2009;). Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives. Curr Med Chem16:218–231 [CrossRef][PubMed]
    [Google Scholar]
  33. Tudzynski P., Hölter K., Correia T., Arntz C., Grammel N., Keller U.. ( 1999;). Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. . Mol Gen Genet261:133–141 [CrossRef][PubMed]
    [Google Scholar]
  34. Wang W. L., Lu Z. Y., Tao H. W., Zhu T. J., Fang Y. C., Gu Q. Q., Zhu W. M.. ( 2007;). Isoechinulin-type alkaloids, variecolorins A-L, from halotolerant Aspergillus variecolor. . J Nat Prod70:1558–1564 [CrossRef][PubMed]
    [Google Scholar]
  35. Williams R. M., Stocking E. M., Sanz-Cervera J. F.. ( 2000;). Biosynthesis of prenylated alkaloids derived from tryptophan. Top Curr Chem209:97–173 [CrossRef]
    [Google Scholar]
  36. Woodside A. B., Huang Z., Poulter C. D.. ( 1988;). Trisammonium geranyl diphosphate. Org Synth66:211–215[CrossRef]
    [Google Scholar]
  37. Yazaki K., Sasaki K., Tsurumaru Y.. ( 2009;). Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry70:1739–1745 [CrossRef][PubMed]
    [Google Scholar]
  38. Yin W.-B., Ruan H.-L., Westrich L., Grundmann A., Li S.-M.. ( 2007;). CdpNPT, an N-prenyltransferase from Aspergillus fumigatus: overproduction, purification and biochemical characterisation. ChemBioChem8:1154–1161 [CrossRef][PubMed]
    [Google Scholar]
  39. Yin W.-B., Cheng J., Li S.-M.. ( 2009a;). Stereospecific synthesis of aszonalenins by using two recombinant prenyltransferases. Org Biomol Chem7:2202–2207 [CrossRef][PubMed]
    [Google Scholar]
  40. Yin W.-B., Grundmann A., Cheng J., Li S.-M.. ( 2009b;). Acetylaszonalenin biosynthesis in Neosartorya fischeri. Identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation. J Biol Chem284:100–109 [CrossRef][PubMed]
    [Google Scholar]
  41. Yin W.-B., Yu X., Xie X.-L., Li S.-M.. ( 2010;). Preparation of pyrrolo[2,3-b]indoles carrying a β-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT. Org Biomol Chem8:2430–2438 [CrossRef][PubMed]
    [Google Scholar]
  42. Yin S., Yu X., Wang Q., Liu X. Q., Li S.-M.. ( 2013;). Identification of a brevianamide F reverse prenyltransferase BrePT from Aspergillus versicolor with a broad substrate specificity towards tryptophan-containing cyclic dipeptides. Appl Microbiol Biotechnol97:1649–1660 [CrossRef][PubMed]
    [Google Scholar]
  43. Zou H., Zheng X., Li S.-M.. ( 2009;). Substrate promiscuity of the cyclic dipeptide prenyltransferases from Aspergillus fumigatus . J Nat Prod72:44–52 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069542-0
Loading
/content/journal/micro/10.1099/mic.0.069542-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error