1887

Abstract

Production of butanol by solventogenic clostridia is controlled through metabolic regulation of the carbon flow and limited by its toxic effects. To overcome cell sensitivity to solvents, stress-directed evolution methodology was used three decades ago on NCIMB 8052 that spawned the SA-1 strain. Here, we evaluated SA-1 solventogenic capabilities when growing on a previously validated medium containing, as carbon- and energy-limiting substrates, sucrose and the products of its hydrolysis -glucose and -fructose and only -fructose. Comparative small-scale batch fermentations with controlled pH (pH 6.5) showed that SA-1 is a solvent hyper-producing strain capable of generating up to 16.1 g l of butanol and 26.3 g l of total solvents, 62.3 % and 63 % more than NCIMB 8052, respectively. This corresponds to butanol and solvent yields of 0.3 and 0.49 g g, respectively (63 % and 65 % increase compared with NCIMB 8052). SA-1 showed a deficiency in -fructose transport as suggested by its 7 h generation time compared with 1 h for NCIMB 8052. To potentially correlate physiological behaviour with genetic mutations, the whole genome of SA-1 was sequenced using the Illumina GA IIx platform. PCR and Sanger sequencing were performed to analyse the putative variations. As a result, four errors were confirmed and validated in the reference genome of NCIMB 8052 and a total of 10 genetic polymorphisms in SA-1. The genetic polymorphisms included eight single nucleotide variants, one small deletion and one large insertion that it is an additional copy of the insertion sequence ISCb1. Two of the genetic polymorphisms, the serine threonine phosphatase _4400 and the solute binding protein _0769, may possibly explain some of the observed physiological behaviour, such as rerouting of the metabolic carbon flow, deregulation of the -fructose phosphotransferase transport system and delayed sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069534-0
2013-12-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2558.html?itemId=/content/journal/micro/10.1099/mic.0.069534-0&mimeType=html&fmt=ahah

References

  1. Annous B. A., Blaschek H. P.. ( 1991;). Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. . Appl Environ Microbiol 57:, 2544–2548.[PubMed]
    [Google Scholar]
  2. Chen K., Wallis J. W., McLellan M. D., Larson D. E., Kalicki J. M., Pohl C. S., McGrath S. D., Wendl M. C., Zhang Q.. & other authors ( 2009;). BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. . Nat Methods 6:, 677–681. [CrossRef][PubMed]
    [Google Scholar]
  3. Chojecki A., Blaschek H. P.. ( 1986;). Effect of carbohydrate source on alpha-amylase and glucoamylase formation by Clostridium acetobutylicum SA-1. . J Ind Microbiol 1:, 63–67. [CrossRef]
    [Google Scholar]
  4. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E.. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol 44:, 812–826. [CrossRef][PubMed]
    [Google Scholar]
  5. Dai Z., Dong H., Zhu Y., Zhang Y., Li Y., Ma Y.. ( 2012;). Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation. . Biotechnol Biofuels 5:, 44. [CrossRef][PubMed]
    [Google Scholar]
  6. Ezeji T., Qureshi N., Blaschek H. P.. ( 2007a;). Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. . Biotechnol Bioeng 97:, 1460–1469. [CrossRef][PubMed]
    [Google Scholar]
  7. Ezeji T. C., Qureshi N., Blaschek H. P.. ( 2007b;). Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. . J Ind Microbiol Biotechnol 34:, 771–777. [CrossRef][PubMed]
    [Google Scholar]
  8. Ezeji T., Milne C., Price N. D., Blaschek H. P.. ( 2010;). Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. . Appl Microbiol Biotechnol 85:, 1697–1712. [CrossRef][PubMed]
    [Google Scholar]
  9. Formanek J., Mackie R., Blaschek H. P.. ( 1997;). Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. . Appl Environ Microbiol 63:, 2306–2310.[PubMed]
    [Google Scholar]
  10. Garrett R. A., Vestergaard G., Shah S. A.. ( 2011;). Archaeal CRISPR-based immune systems: exchangeable functional modules. . Trends Microbiol 19:, 549–556. [CrossRef][PubMed]
    [Google Scholar]
  11. Gottschal J. C., Morris J. G.. ( 1981;). Non-production of acetone and butanol by Clostridium acetobutylicum during glucose and ammonium limitation in continuous culture. . Biotechnol Lett 3:, 525–530. [CrossRef]
    [Google Scholar]
  12. Griffiths-Jones S., Bateman A., Marshall M., Khanna A., Eddy S. R.. ( 2003;). Rfam: an RNA family database. . Nucleic Acids Res 31:, 439–441. [CrossRef][PubMed]
    [Google Scholar]
  13. Grissa I., Vergnaud G., Pourcel C.. ( 2007a;). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. . Nucleic Acids Res 35: (Web Server), W52–W57. [CrossRef][PubMed]
    [Google Scholar]
  14. Grissa I., Vergnaud G., Pourcel C.. ( 2007b;). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. . BMC Bioinformatics 8:, 172. [CrossRef][PubMed]
    [Google Scholar]
  15. Grissa I., Vergnaud G., Pourcel C.. ( 2008;). CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats. . Nucleic Acids Res 36: (Web Server), W145–W148. [CrossRef][PubMed]
    [Google Scholar]
  16. Hamada M., Wijaya E., Frith M. C., Asai K.. ( 2011;). Probabilistic alignments with quality scores: an application to short-read mapping toward accurate SNP/indel detection. . Bioinformatics 27:, 3085–3092. [CrossRef][PubMed]
    [Google Scholar]
  17. Harris L. M., Desai R. P., Welker N. E., Papoutsakis E. T.. ( 2000;). Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition. ? Biotechnol Bioeng 67:, 1–11. [CrossRef][PubMed]
    [Google Scholar]
  18. Heluane H., Evans M. R., Dagher S. F., Bruno-Bárcena J. M.. ( 2011;). Meta-analysis and functional validation of nutritional requirements of solventogenic clostridia growing under butanol stress conditions and coutilization of d-glucose and d-xylose. . Appl Environ Microbiol 77:, 4473–4485. [CrossRef][PubMed]
    [Google Scholar]
  19. Jain M. K., Beacom D., Datta R.. ( 1993;). Mutant strain of C. acetobutylicum and process for making butanol. . US Patent US 5192673A.
  20. Jang Y. S., Lee J., Malaviya A., Seung Y., Cho J. H., Lee S. Y.. ( 2012a;). Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. . Biotechnol J 7:, 186–198. [CrossRef][PubMed]
    [Google Scholar]
  21. Jang Y. S., Lee J. Y., Lee J., Park J. H., Im J. A., Eom M. H., Lee J., Lee S. H., Song H.. & other authors ( 2012b;). Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. . MBio 3:, e00314-12. [CrossRef][PubMed]
    [Google Scholar]
  22. Jia K., Zhang Y., Li Y.. ( 2012;). Identification and characterization of two functionally unknown genes involved in butanol tolerance of Clostridium acetobutylicum. . PLoS ONE 7:, e38815. [CrossRef][PubMed]
    [Google Scholar]
  23. Johnson J. L., Toth J., Santiwatanakul S., Chen J. S.. ( 1997;). Cultures of “Clostridium acetobutylicum” from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA-DNA reassociation. . Int J Syst Bacteriol 47:, 420–424. [CrossRef][PubMed]
    [Google Scholar]
  24. Kashket E. R., Cao Z. Y.. ( 1993;). Isolation of a degeneration resistant mutant of Clostridium acetobutylicum NCIMB 8052. . Appl Environ Microbiol 59:, 4198–4202.[PubMed]
    [Google Scholar]
  25. Kashket E. R., Cao Z. Y.. ( 1995;). Clostridial strain degeneration. . FEMS Microbiol Rev 17:, 307–315. [CrossRef]
    [Google Scholar]
  26. Kilstrup M., Hammer K., Ruhdal Jensen P., Martinussen J.. ( 2005;). Nucleotide metabolism and its control in lactic acid bacteria. . FEMS Microbiol Rev 29:, 555–590. [CrossRef][PubMed]
    [Google Scholar]
  27. Krawitz P., Rödelsperger C., Jäger M., Jostins L., Bauer S., Robinson P. N.. ( 2010;). Microindel detection in short-read sequence data. . Bioinformatics 26:, 722–729. [CrossRef][PubMed]
    [Google Scholar]
  28. Kutzenok A., Aschner M.. ( 1952;). Degenerative processes in a strain of Clostridium butylicum. . J Bacteriol 64:, 829–836.[PubMed]
    [Google Scholar]
  29. Lee J., Blaschek H. P.. ( 2001;). Glucose uptake in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. . Appl Environ Microbiol 67:, 5025–5031. [CrossRef][PubMed]
    [Google Scholar]
  30. Lee S. F., Forsberg C. W., Gibbins L. N.. ( 1985a;). Cellulolytic activity of Clostridium acetobutylicum. . Appl Environ Microbiol 50:, 220–228.[PubMed]
    [Google Scholar]
  31. Lee S. F., Forsberg C. W., Gibbins L. N.. ( 1985b;). Xylanolytic activity of Clostridium acetobutylicum. . Appl Environ Microbiol 50:, 1068–1076.[PubMed]
    [Google Scholar]
  32. Lee J., Mitchell W. J., Tangney M., Blaschek H. P.. ( 2005;). Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. . Appl Environ Microbiol 71:, 3384–3387. [CrossRef][PubMed]
    [Google Scholar]
  33. Lee S. Y., Park J. H., Jang S. H., Nielsen L. K., Kim J., Jung K. S.. ( 2008;). Fermentative butanol production by clostridia. . Biotechnol Bioeng 101:, 209–228. [CrossRef][PubMed]
    [Google Scholar]
  34. Li H., Ruan J., Durbin R.. ( 2008;). Mapping short DNA sequencing reads and calling variants using mapping quality scores. . Genome Res 18:, 1851–1858. [CrossRef][PubMed]
    [Google Scholar]
  35. Lienhardt J., Schripsema J., Qureshi N., Blaschek H. P.. ( 2002;). Butanol production by Clostridium beijerinckii BA101 in an immobilized cell biofilm reactor: increase in sugar utilization. . Appl Biochem Biotechnol 98-100:, 591–598. [CrossRef][PubMed]
    [Google Scholar]
  36. Lin Y. L., Blaschek H. P.. ( 1983;). Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. . Appl Environ Microbiol 45:, 966–973.[PubMed]
    [Google Scholar]
  37. Liyanage H., Holcroft P., Evans V. J., Keis S., Wilkinson S. R., Kashket E. R., Young M.. ( 2000;). A new insertion sequence, ISCb1, from Clostridium beijernickii NCIMB 8052. . J Mol Microbiol Biotechnol 2:, 107–113.[PubMed]
    [Google Scholar]
  38. Mann M. S., Dragovic Z., Schirrmacher G., Lütke-Eversloh T.. ( 2012;). Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. . Biotechnol Lett 34:, 1643–1649. [CrossRef][PubMed]
    [Google Scholar]
  39. Milne C. B., Eddy J. A., Raju R., Ardekani S., Kim P. J., Senger R. S., Jin Y. S., Blaschek H. P., Price N. D.. ( 2011;). Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. . BMC Syst Biol 5:, 130. [CrossRef][PubMed]
    [Google Scholar]
  40. Mitchell W. J.. ( 1998;). Physiology of carbohydrate to solvent conversion by clostridia. . Adv Microb Physiol 39:, 31–130. [CrossRef][PubMed]
    [Google Scholar]
  41. Mitchell W. J., Shaw J. E., Andrews L.. ( 1991;). Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052. . Appl Environ Microbiol 57:, 2534–2539.[PubMed]
    [Google Scholar]
  42. Najafpour G. D., Shan C. P.. ( 2003;). Enzymatic hydrolysis of molasses. . Bioresour Technol 86:, 91–94. [CrossRef][PubMed]
    [Google Scholar]
  43. Nataf Y., Yaron S., Stahl F., Lamed R., Bayer E. A., Scheper T. H., Sonenshein A. L., Shoham Y.. ( 2009;). Cellodextrin and laminaribiose ABC transporters in Clostridium thermocellum. . J Bacteriol 191:, 203–209. [CrossRef][PubMed]
    [Google Scholar]
  44. Ni Y., Wang Y., Sun Z.. ( 2012;). Butanol production from cane molasses by Clostridium saccharobutylicum DSM 13864: batch and semicontinuous fermentation. . Appl Biochem Biotechnol 166:, 1896–1907. [CrossRef][PubMed]
    [Google Scholar]
  45. Ni Y., Xia Z., Wang Y., Sun Z.. ( 2013;). Continuous butanol fermentation from inexpensive sugar-based feedstocks by Clostridium saccharobutylicum DSM 13864. . Bioresour Technol 129:, 680–685. [CrossRef][PubMed]
    [Google Scholar]
  46. Nölling J., Breton G., Omelchenko M. V., Makarova K. S., Zeng Q., Gibson R., Lee H. M., Dubois J., Qiu D.. & other authors ( 2001;). Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. . J Bacteriol 183:, 4823–4838. [CrossRef][PubMed]
    [Google Scholar]
  47. Obuchowski M.. ( 2005;). [Serine-threonine protein phosphatases from Bacillus subtilis]. . Postepy Biochem 51:, 95–104 (in Polish).[PubMed]
    [Google Scholar]
  48. Quratulain S., Qadeer M. A., Chaudhry M. Y., Kausar A. R.. ( 1995;). Development and characterization of butanol-resistant strain of Clostridium acetobutylicum in molasses medium. . Folia Microbiol (Praha) 40:, 467–471. [CrossRef]
    [Google Scholar]
  49. Qureshi N., Blaschek H. P.. ( 2000;). Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. . Appl Biochem Biotechnol 84–86:, 225–235. [CrossRef][PubMed]
    [Google Scholar]
  50. Qureshi N., Saha B. C., Cotta M. A.. ( 2007;). Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. . Bioprocess Biosyst Eng 30:, 419–427. [CrossRef][PubMed]
    [Google Scholar]
  51. Qureshi N., Saha B. C., Dien B., Hector R. E., Cotta M. A.. ( 2010;). Production of butanol (a biofuel) from agricultural residues: Part I – Use of barley straw hydrolysate. . Biomass Bioenergy 34:, 559–565. [CrossRef]
    [Google Scholar]
  52. Reid S. J., Rafudeen M. S., Leat N. G.. ( 1999;). The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon. . Microbiology 145:, 1461–1472. [CrossRef][PubMed]
    [Google Scholar]
  53. Robinson J. T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E. S., Getz G., Mesirov J. P.. ( 2011;). Integrative genomics viewer. . Nat Biotechnol 29:, 24–26. [CrossRef][PubMed]
    [Google Scholar]
  54. Schultz A. C., Nygaard P., Saxild H. H.. ( 2001;). Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. . J Bacteriol 183:, 3293–3302. [CrossRef][PubMed]
    [Google Scholar]
  55. Soucaille P., Joliff G., Izard A., Goma G.. ( 1987;). Butanol tolerance and autobacteriocin production by Clostridium acetobutylicum. . Curr Microbiol 14:, 295–299. [CrossRef]
    [Google Scholar]
  56. Stackebrandt E., Rainey F. A.. ( 1997;). Phylogenetic relationships. . In The Clostridia: Molecular Biology and Pathogenesis, pp. 3–19. Edited by Julian I. R., Bruce A. M., Songer J. G., Richard W. T., Richard W. T... San Diego, CA:: Academic Press;.
    [Google Scholar]
  57. Tangney M., Rousse C., Yazdanian M., Mitchell W. J.. ( 1998;). Note: sucrose transport and metabolism in Clostridium beijerinckii NCIMB 8052. . J Appl Microbiol 84:, 914–919. [CrossRef][PubMed]
    [Google Scholar]
  58. Terzaghi B. E., Sandine W. E.. ( 1975;). Improved medium for lactic streptococci and their bacteriophages. . Appl Microbiol 29:, 807–813.[PubMed]
    [Google Scholar]
  59. Treangen T. J., Salzberg S. L.. ( 2012;). Repetitive DNA and next-generation sequencing: computational challenges and solutions. . Nat Rev Genet 13:, 36–46.[PubMed]
    [Google Scholar]
  60. Van Der Westhuizen A., Jones D. T., Woods D. R.. ( 1982;). Autolytic activity and butanol tolerance of Clostridium acetobutylicum. . Appl Environ Microbiol 44:, 1277–1281.[PubMed]
    [Google Scholar]
  61. Wang Y., Blaschek H. P.. ( 2011;). Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052. . Bioresour Technol 102:, 9985–9990. [CrossRef][PubMed]
    [Google Scholar]
  62. Wilson K.. ( 1994;). Preparation of genomic DNA from bacteria. . In: Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by Ausubel F. A., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Wiley;.
    [Google Scholar]
  63. Wlodawer A., Li M., Gustchina A., Oyama H., Dunn B. M., Oda K.. ( 2003;). Structural and enzymatic properties of the sedolisin family of serine-carboxyl peptidases. . Acta Biochim Pol 50:, 81–102.[PubMed]
    [Google Scholar]
  64. Xi H., Schneider B. L., Reitzer L.. ( 2000;). Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. . J Bacteriol 182:, 5332–5341. [CrossRef][PubMed]
    [Google Scholar]
  65. Xiao H., Gu Y., Ning Y., Yang Y., Mitchell W. J., Jiang W., Yang S.. ( 2011;). Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. . Appl Environ Microbiol 77:, 7886–7895. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069534-0
Loading
/content/journal/micro/10.1099/mic.0.069534-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error