1887

Abstract

has five genes encoding ,-transpeptidases (Ldt) with varied functions. Three of these enzymes (YbiS, ErfK, YcfS) have been shown to cross-link Braun’s lipoprotein to the peptidoglycan (PG), while the other two (YnhG, YcbB) form direct -diaminopimelate (DAP-DAP, or 3-3) cross-links within the PG. In addition, Ldt enzymes can also incorporate non-canonical -amino acids, such as -methionine, into the PG. To further investigate the role of these enzymes and, in particular, 3-3 linkages in cell envelope physiology we constructed and phenotypically characterized a variety of multiple Ldt deletion mutants of . We report that a triple deletion mutant lacking , and is hypersusceptible to the metal-chelating agent EDTA, leaks periplasmic proteins and is resistant to the toxic effect of -methionine. A double mutant had no discernible phenotype; however, examination of the phenotypes of various Ldt mutants bearing an additional DAP auxotrophic mutation ( : : Cm) showed that a quintuple mutant strain lacking all Ldt genes was severely impaired for growth on media with limited DAP. These data demonstrate that loss of the Ldt enzymes involved with coupling the PG to Braun's lipoprotein resulted in the loss of outer membrane stability while loss of the Ldt enzymes involved with DAP-DAP linkages had no observable effect on the cell envelope. Loss of all Ldt enzymes proved detrimental to growth when cells were starved for DAP, indicating a combined role for both 3-3 and Braun’s lipoprotein cross-links in cell viability only under a specific PG stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069211-0
2013-09-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/9/1842.html?itemId=/content/journal/micro/10.1099/mic.0.069211-0&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. ( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. . Mol Syst Biol 2:, 0008. [CrossRef][PubMed]
    [Google Scholar]
  2. Barna J. C., Williams D. H.. ( 1984;). The structure and mode of action of glycopeptide antibiotics of the vancomycin group. . Annu Rev Microbiol 38:, 339–357. [CrossRef][PubMed]
    [Google Scholar]
  3. Bielnicki J., Devedjiev Y., Derewenda U., Dauter Z., Joachimiak A., Derewenda Z. S.. ( 2006;). B. subtilis YkuD protein at 2.0 Å resolution: insights into the structure and function of a novel, ubiquitous family of bacterial enzymes. . Proteins 62:, 144–151. [CrossRef][PubMed]
    [Google Scholar]
  4. Boos W., Shuman H.. ( 1998;). Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. . Microbiol Mol Biol Rev 62:, 204–229.[PubMed]
    [Google Scholar]
  5. Braun V.. ( 1975;). Covalent lipoprotein from the outer membrane of Escherichia coli. . Biochim Biophys Acta 415:, 335–377. [CrossRef][PubMed]
    [Google Scholar]
  6. Braun V., Sieglin U.. ( 1970;). The covalent murein-lipoprotein structure of the Escherichia coli cell wall. The attachment site of the lipoprotein on the murein. . Eur J Biochem 13:, 336–346. [CrossRef][PubMed]
    [Google Scholar]
  7. Braun V., Wolff H.. ( 1970;). The murein-lipoprotein linkage in the cell wall of Escherichia coli. . Eur J Biochem 14:, 387–391. [CrossRef][PubMed]
    [Google Scholar]
  8. Buist G., Steen A., Kok J., Kuipers O. P.. ( 2008;). LysM, a widely distributed protein motif for binding to (peptido)glycans. . Mol Microbiol 68:, 838–847. [CrossRef][PubMed]
    [Google Scholar]
  9. Burman L. G., Park J. T.. ( 1983;). Changes in the composition of Escherichia coli murein as it ages during exponential growth. . J Bacteriol 155:, 447–453.[PubMed]
    [Google Scholar]
  10. Cava F., de Pedro M. A., Lam H., Davis B. M., Waldor M. K.. ( 2011;). Distinct pathways for modification of the bacterial cell wall by non-canonical d-amino acids. . EMBO J 30:, 3442–3453. [CrossRef][PubMed]
    [Google Scholar]
  11. Cowles C. E., Li Y., Semmelhack M. F., Cristea I. M., Silhavy T. J.. ( 2011;). The free and bound forms of Lpp occupy distinct subcellular locations in Escherichia coli. . Mol Microbiol 79:, 1168–1181. [CrossRef][PubMed]
    [Google Scholar]
  12. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef][PubMed]
    [Google Scholar]
  13. Dramsi S., Magnet S., Davison S., Arthur M.. ( 2008;). Covalent attachment of proteins to peptidoglycan. . FEMS Microbiol Rev 32:, 307–320. [CrossRef][PubMed]
    [Google Scholar]
  14. Glauner B., Höltje J. V.. ( 1990;). Growth pattern of the murein sacculus of Escherichia coli. . J Biol Chem 265:, 18988–18996.[PubMed]
    [Google Scholar]
  15. Glauner B., Höltje J. V., Schwarz U.. ( 1988;). The composition of the murein of Escherichia coli. . J Biol Chem 263:, 10088–10095.[PubMed]
    [Google Scholar]
  16. Goffin C., Ghuysen J. M.. ( 2002;). Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. . Microbiol Mol Biol Rev 66:, 702–738. [CrossRef][PubMed]
    [Google Scholar]
  17. Grula E. A.. ( 1960;). Cell division in a species of Erwinia. I. Inhibition of division by d-amino acids. . J Bacteriol 80:, 375–385.[PubMed]
    [Google Scholar]
  18. Gupta R., Lavollay M., Mainardi J. L., Arthur M., Bishai W. R., Lamichhane G.. ( 2010;). The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. . Nat Med 16:, 466–469. [CrossRef][PubMed]
    [Google Scholar]
  19. Hirota Y., Suzuki H., Nishimura Y., Yasuda S.. ( 1977;). On the process of cellular division in Escherichia coli: a mutant of E. coli lacking a murein-lipoprotein. . Proc Natl Acad Sci U S A 74:, 1417–1420. [CrossRef][PubMed]
    [Google Scholar]
  20. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. ( 1998;). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. . Gene 212:, 77–86. [CrossRef][PubMed]
    [Google Scholar]
  21. Horcajo P., de Pedro M. A., Cava F.. ( 2012;). Peptidoglycan plasticity in bacteria: stress-induced peptidoglycan editing by noncanonical d-amino acids. . Microb Drug Resist 18:, 306–313. [CrossRef][PubMed]
    [Google Scholar]
  22. Kitagawa M., Ara T., Arifuzzaman M., Ioka-Nakamichi T., Inamoto E., Toyonaga H., Mori H.. ( 2006;). Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. . DNA Res 12:, 291–299. [CrossRef][PubMed]
    [Google Scholar]
  23. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  24. Lavollay M., Arthur M., Fourgeaud M., Dubost L., Marie A., Veziris N., Blanot D., Gutmann L., Mainardi J. L.. ( 2008;). The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by l,d-transpeptidation. . J Bacteriol 190:, 4360–4366. [CrossRef][PubMed]
    [Google Scholar]
  25. Lavollay M., Fourgeaud M., Herrmann J. L., Dubost L., Marie A., Gutmann L., Arthur M., Mainardi J. L.. ( 2011;). The peptidoglycan of Mycobacterium abscessus is predominantly cross-linked by l,d-transpeptidases. . J Bacteriol 193:, 778–782. [CrossRef][PubMed]
    [Google Scholar]
  26. Magnet S., Arbeloa A., Mainardi J. L., Hugonnet J. E., Fourgeaud M., Dubost L., Marie A., Delfosse V., Mayer C.. & other authors ( 2007a;). Specificity of l,d-transpeptidases from Gram-positive bacteria producing different peptidoglycan chemotypes. . J Biol Chem 282:, 13151–13159. [CrossRef][PubMed]
    [Google Scholar]
  27. Magnet S., Bellais S., Dubost L., Fourgeaud M., Mainardi J. L., Petit-Frère S., Marie A., Mengin-Lecreulx D., Arthur M., Gutmann L.. ( 2007b;). Identification of the l,d-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. . J Bacteriol 189:, 3927–3931. [CrossRef][PubMed]
    [Google Scholar]
  28. Magnet S., Dubost L., Marie A., Arthur M., Gutmann L.. ( 2008;). Identification of the l,d-transpeptidases for peptidoglycan cross-linking in Escherichia coli. . J Bacteriol 190:, 4782–4785. [CrossRef][PubMed]
    [Google Scholar]
  29. Mainardi J. L., Legrand R., Arthur M., Schoot B., van Heijenoort J., Gutmann L.. ( 2000;). Novel mechanism of β-lactam resistance due to bypass of dd-transpeptidation in Enterococcus faecium. . J Biol Chem 275:, 16490–16496. [CrossRef][PubMed]
    [Google Scholar]
  30. Mainardi J. L., Morel V., Fourgeaud M., Cremniter J., Blanot D., Legrand R., Frehel C., Arthur M., Van Heijenoort J., Gutmann L.. ( 2002;). Balance between two transpeptidation mechanisms determines the expression of β-lactam resistance in Enterococcus faecium. . J Biol Chem 277:, 35801–35807. [CrossRef][PubMed]
    [Google Scholar]
  31. Mainardi J. L., Fourgeaud M., Hugonnet J. E., Dubost L., Brouard J. P., Ouazzani J., Rice L. B., Gutmann L., Arthur M.. ( 2005;). A novel peptidoglycan cross-linking enzyme for a β-lactam-resistant transpeptidation pathway. . J Biol Chem 280:, 38146–38152. [CrossRef][PubMed]
    [Google Scholar]
  32. Mainardi J. L., Hugonnet J. E., Rusconi F., Fourgeaud M., Dubost L., Moumi A. N., Delfosse V., Mayer C., Gutmann L.. & other authors ( 2007;). Unexpected inhibition of peptidoglycan ld-transpeptidase from Enterococcus faecium by the β-lactam imipenem. . J Biol Chem 282:, 30414–30422. [CrossRef][PubMed]
    [Google Scholar]
  33. Moore S. D.. ( 2011;). Assembling new Escherichia coli strains by transduction using phage P1. . Methods Mol Biol 765:, 155–169. [CrossRef][PubMed]
    [Google Scholar]
  34. Peltier J., Courtin P., El Meouche I., Lemée L., Chapot-Chartier M. P., Pons J. L.. ( 2011;). Clostridium difficile has an original peptidoglycan structure with a high level of N-acetylglucosamine deacetylation and mainly 3-3 cross-links. . J Biol Chem 286:, 29053–29062. [CrossRef][PubMed]
    [Google Scholar]
  35. Pisabarro A. G., de Pedro M. A., Vázquez D.. ( 1985;). Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the state of growth of the culture. . J Bacteriol 161:, 238–242.[PubMed]
    [Google Scholar]
  36. Quintela J. C., de Pedro M. A., Zöllner P., Allmaier G., Garcia-del Portillo F.. ( 1997;). Peptidoglycan structure of Salmonella typhimurium growing within cultured mammalian cells. . Mol Microbiol 23:, 693–704. [CrossRef][PubMed]
    [Google Scholar]
  37. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  38. Signoretto C., Lleò M. M., Canepari P.. ( 2002;). Modification of the peptidoglycan of Escherichia coli in the viable but nonculturable state. . Curr Microbiol 44:, 125–131. [CrossRef][PubMed]
    [Google Scholar]
  39. Typas A., Banzhaf M., Gross C. A., Vollmer W.. ( 2012;). From the regulation of peptidoglycan synthesis to bacterial growth and morphology. . Nat Rev Microbiol 10:, 123–136.[PubMed]
    [Google Scholar]
  40. Vaara M.. ( 1992;). Agents that increase the permeability of the outer membrane. . Microbiol Rev 56:, 395–411.[PubMed]
    [Google Scholar]
  41. Vollmer W., Bertsche U.. ( 2008;). Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. . Biochim Biophys Acta 1778:, 1714–1734. [CrossRef][PubMed]
    [Google Scholar]
  42. Vollmer W., Blanot D., de Pedro M. A.. ( 2008;). Peptidoglycan structure and architecture. . FEMS Microbiol Rev 32:, 149–167. [CrossRef][PubMed]
    [Google Scholar]
  43. Weidel W., Pelzer H.. ( 1964;). Bagshaped macromolecules – a new outlook on bacterial cell walls. . Adv Enzymol Relat Areas Mol Biol 26:, 193–232.[PubMed]
    [Google Scholar]
  44. Wietzerbin J., Das B. C., Petit J. F., Lederer E., Leyh-Bouille M., Ghuysen J. M.. ( 1974;). Occurrence of d-alanyl-(d)-meso-diaminopimelic acid and meso-diaminopimelyl-meso-diaminopimelic acid interpeptide linkages in the peptidoglycan of Mycobacteria. . Biochemistry 13:, 3471–3476. [CrossRef][PubMed]
    [Google Scholar]
  45. Yem D. W., Wu H. C.. ( 1977;). Genetic characterization of an Escherichia coli mutant altered in the structure of murein lipoprotein. . J Bacteriol 131:, 759–764.[PubMed]
    [Google Scholar]
  46. Yem D. W., Wu H. C.. ( 1978;). Physiological characterization of an Escherichia coli mutant altered in the structure of murein lipoprotein. . J Bacteriol 133:, 1419–1426.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069211-0
Loading
/content/journal/micro/10.1099/mic.0.069211-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error