1887

Abstract

Ciprofloxacin resistance is common both among animal and human isolates. Resistant isolates are shown to persist even without selection pressure. To obtain further insight on effects of ciprofloxacin exposure on we compared transcriptional responses of both wild-type strain 81-176 (ciprofloxacin MIC 0.125 mg l) and its intermediate ciprofloxacin-resistant variant P3 (Asp90→Asn in GyrA) in the absence and presence of ciprofloxacin. Further, we sequenced the genome of P3 and compared the sequence with that of wild-type 81-176. One hour of exposure to 8 mg l of ciprofloxacin did not decrease the viability of the parent strain 81-176. Transcriptional analysis revealed that ciprofloxacin exposure caused changes in the expression of genes involved in DNA replication and repair. While in the wild-type the exposure caused downregulation of several genes involved in the control of DNA replication and recombination, the genes controlling nucleotide excision repair and DNA modification were upregulated in both the wild-type and P3. In addition, we observed that ciprofloxacin exposure caused upregulation of genes responsible for damage recognition in base excision repair in P3. In contrast, without ciprofloxacin exposure, DNA repair mechanisms were substantially downregulated in P3. The genome sequence of P3 compared to that of the 81-176 parental strain had three non-synonymous substitutions and a deletion, revealing that the resistant variant had maintained genetic integrity. In conclusion, enhanced DNA repair mechanisms under ciprofloxacin exposure might explain maintenance of genomic integrity in ciprofloxacin-resistant variant P3.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069203-0
2013-12-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2513.html?itemId=/content/journal/micro/10.1099/mic.0.069203-0&mimeType=html&fmt=ahah

References

  1. Barrick J. E., Yu D. S., Yoon S. H., Jeong H., Oh T. K., Schneider D., Lenski R. E., Kim J. F..( 2009;). Genome evolution and adaptation in a long-term experiment with Escherichia coli.. Nature461:1243–1247 [CrossRef][PubMed]
    [Google Scholar]
  2. Beckmann L., Müller M., Luber P., Schrader C., Bartelt E., Klein G..( 2004;). Analysis of gyrA mutations in quinolone-resistant and -susceptible Campylobacter jejuni isolates from retail poultry and human clinical isolates by non-radioactive single-strand conformation polymorphism analysis and DNA sequencing. J Appl Microbiol96:1040–1047 [CrossRef][PubMed]
    [Google Scholar]
  3. Breidenstein E. B. M., Bains M., Hancock R. E. W..( 2012;). Involvement of the lon protease in the SOS response triggered by ciprofloxacin in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother56:2879–2887 [CrossRef][PubMed]
    [Google Scholar]
  4. Chevreux B., Wetter T., Suhai S..( 1999;). Genome Sequence Assembly Using Trace Signals and Additional Sequence Information. Computer Science and Biology: Proceedings of the German Conference on Bioinformatics. GCB45–56
    [Google Scholar]
  5. Cirz R. T., O’Neill B. M., Hammond J. A., Head S. R., Romesberg F. E..( 2006;). Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol188:7101–7110 [CrossRef][PubMed]
    [Google Scholar]
  6. Cirz R. T., Jones M. B., Gingles N. A., Minogue T. D., Jarrahi B., Peterson S. N., Romesberg F. E..( 2007;). Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. J Bacteriol189:531–539 [CrossRef][PubMed]
    [Google Scholar]
  7. Dorer M. S., Fero J., Salama N. R..( 2010;). DNA damage triggers genetic exchange in Helicobacter pylori.. PLoS Pathog6:e1001026 [CrossRef][PubMed]
    [Google Scholar]
  8. Drlica K., Zhao X..( 1997;). DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev61:377–392[PubMed]
    [Google Scholar]
  9. Drlica K., Hiasa H., Kerns R., Malik M., Mustaev A., Zhao X..( 2009;). Quinolones: action and resistance updated. Curr Top Med Chem9:981–998 [CrossRef][PubMed]
    [Google Scholar]
  10. Gaasbeek E. J., van der Wal F. J., van Putten J. P. M., de Boer P., van der Graaf-van Bloois L., de Boer A. G., Vermaning B. J., Wagenaar J. A..( 2009;). Functional characterization of excision repair and RecA-dependent recombinational DNA repair in Campylobacter jejuni.. J Bacteriol191:3785–3793 [CrossRef][PubMed]
    [Google Scholar]
  11. Ge B., McDermott P. F., White D. G., Meng J..( 2005;). Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli.. Antimicrob Agents Chemother49:3347–3354 [CrossRef][PubMed]
    [Google Scholar]
  12. Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y..& other authors ( 2004;). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol5:R80 [CrossRef][PubMed]
    [Google Scholar]
  13. Gilbreath J. J., Cody W. L., Merrell D. S., Hendrixson D. R..( 2011;). Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter.. Microbiol Mol Biol Rev75:84–132 [CrossRef][PubMed]
    [Google Scholar]
  14. Gmuender H., Kuratli K., Di Padova K., Gray C. P., Keck W., Evers S..( 2001;). Gene expression changes triggered by exposure of Haemophilus influenzae to novobiocin or ciprofloxacin: combined transcription and translation analysis. Genome Res11:28–42 [CrossRef][PubMed]
    [Google Scholar]
  15. Guerry P., Pope P. M., Burr D. H., Leifer J., Joseph S. W., Bourgeois A. L..( 1994;). Development and characterization of recA mutants of Campylobacter jejuni for inclusion in attenuated vaccines. Infect Immun62:426–432[PubMed]
    [Google Scholar]
  16. Han J., Sahin O., Barton Y. W., Zhang Q..( 2008;). Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni.. PLoS Pathog4:e1000083 [CrossRef][PubMed]
    [Google Scholar]
  17. Han J., Wang Y., Sahin O., Shen Z., Guo B., Shen J., Zhang Q..( 2012;). A fluoroquinolone resistance associated mutation in gyrA Affects DNA supercoiling in Campylobacter jejuni.. Front Cell Infect Microbiol2:21 [CrossRef][PubMed]
    [Google Scholar]
  18. Hannula M., Hänninen M. L..( 2008;). Effects of low-level ciprofloxacin challenge in the in vitro development of ciprofloxacin resistance in Campylobacter jejuni.. Microb Drug Resist14:197–201 [CrossRef][PubMed]
    [Google Scholar]
  19. Hyytiäinen H., Juntunen P., Akrenius N., Hänninen M. L..( 2012;). Importance of RNA stabilization: evaluation of ansB, ggt, and rpoA transcripts in microaerophilic Campylobacter jejuni 81-176. Arch Microbiol194:803–808 [CrossRef][PubMed]
    [Google Scholar]
  20. Kuzminov A..( 1999;). Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiol Mol Biol Rev63:751–813[PubMed]
    [Google Scholar]
  21. Langmead B., Salzberg S. L..( 2012;). Fast gapped-read alignment with Bowtie 2. Nat Methods9:357–359 [CrossRef][PubMed]
    [Google Scholar]
  22. Lin J., Michel L. O., Zhang Q..( 2002;). CmeABC functions as a multidrug efflux system in Campylobacter jejuni.. Antimicrob Agents Chemother46:2124–2131 [CrossRef][PubMed]
    [Google Scholar]
  23. López E., Elez M., Matic I., Blázquez J..( 2007;). Antibiotic-mediated recombination: ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli.. Mol Microbiol64:83–93 [CrossRef][PubMed]
    [Google Scholar]
  24. Luo N., Sahin O., Lin J., Michel L. O., Zhang Q..( 2003;). In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob Agents Chemother47:390–394 [CrossRef][PubMed]
    [Google Scholar]
  25. Luo N., Pereira S., Sahin O., Lin J., Huang S., Michel L., Zhang Q..( 2005;). Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc Natl Acad Sci U S A102:541–546 [CrossRef][PubMed]
    [Google Scholar]
  26. Marrer E., Satoh A. T., Johnson M. M., Piddock L. J. V., Page M. G. P..( 2006;). Global transcriptome analysis of the responses of a fluoroquinolone-resistant Streptococcus pneumoniae mutant and its parent to ciprofloxacin. Antimicrob Agents Chemother50:269–278 [CrossRef][PubMed]
    [Google Scholar]
  27. Mortier-Barrière I., Velten M., Dupaigne P., Mirouze N., Piétrement O., McGovern S., Fichant G., Martin B., Noirot P..& other authors ( 2007;). A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell130:824–836 [CrossRef][PubMed]
    [Google Scholar]
  28. Nelson J. M., Chiller T. M., Powers J. H., Angulo F. J..( 2007;). Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. Clin Infect Dis44:977–980 [CrossRef][PubMed]
    [Google Scholar]
  29. O’Regan E., Quinn T., Frye J. G., Pagès J. M., Porwollik S., Fedorka-Cray P. J., McClelland M., Fanning S..( 2010;). Fitness costs and stability of a high-level ciprofloxacin resistance phenotype in Salmonella enterica serotype enteritidis: reduced infectivity associated with decreased expression of Salmonella pathogenicity island 1 genes. Antimicrob Agents Chemother54:367–374 [CrossRef][PubMed]
    [Google Scholar]
  30. O’Sullivan D. M., Hinds J., Butcher P. D., Gillespie S. H., McHugh T. D..( 2008;). Mycobacterium tuberculosis DNA repair in response to subinhibitory concentrations of ciprofloxacin. J Antimicrob Chemother62:1199–1202 [CrossRef][PubMed]
    [Google Scholar]
  31. Omote H., Hiasa M., Matsumoto T., Otsuka M., Moriyama Y..( 2006;). The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci27:587–593 [CrossRef][PubMed]
    [Google Scholar]
  32. Palyada K., Sun Y. Q., Flint A., Butcher J., Naikare H., Stintzi A..( 2009;). Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni.. BMC Genomics10:481 [CrossRef][PubMed]
    [Google Scholar]
  33. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T..& other authors ( 2000;). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403:665–668 [CrossRef][PubMed]
    [Google Scholar]
  34. Payot S., Cloeckaert A., Chaslus-Dancla E..( 2002;). Selection and characterization of fluoroquinolone-resistant mutants of Campylobacter jejuni using enrofloxacin. Microb Drug Resist8:335–343 [CrossRef][PubMed]
    [Google Scholar]
  35. Pfaffl M. W..( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res29:e45 [CrossRef][PubMed]
    [Google Scholar]
  36. Piddock L. J. V., Ricci V., Pumbwe L., Everett M. J., Griggs D. J..( 2003;). Fluoroquinolone resistance in Campylobacter species from man and animals: detection of mutations in topoisomerase genes. J Antimicrob Chemother51:19–26 [CrossRef][PubMed]
    [Google Scholar]
  37. R Development Core Team( 2008;). R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing;
    [Google Scholar]
  38. Selby K., Lindström M., Somervuo P., Heap J. T., Minton N. P., Korkeala H..( 2011;). Important role of class I heat shock genes hrcA and dnaK in the heat shock response and the response to pH and NaCl stress of group I Clostridium botulinum strain ATCC 3502. Appl Environ Microbiol77:2823–2830 [CrossRef][PubMed]
    [Google Scholar]
  39. Smeds L., Künstner A..( 2011;). ConDeTri–a content dependent read trimmer for Illumina data. PLoS ONE6:e26314 [CrossRef][PubMed]
    [Google Scholar]
  40. Steffen S. E., Katz F. S., Bryant F. R..( 2002;). Complete inhibition of Streptococcus pneumoniae RecA protein-catalyzed ATP hydrolysis by single-stranded DNA-binding protein (SSB protein): implications for the mechanism of SSB protein-stimulated DNA strand exchange. J Biol Chem277:14493–14500 [CrossRef][PubMed]
    [Google Scholar]
  41. Takata T., Ando T., Israel D. A., Wassenaar T. M., Blaser M. J..( 2005;). Role of dprA in transformation of Campylobacter jejuni.. FEMS Microbiol Lett252:161–168 [CrossRef][PubMed]
    [Google Scholar]
  42. Wang Y., Huang W. M., Taylor D. E..( 1993;). Cloning and nucleotide sequence of the Campylobacter jejuni gyrA gene and characterization of quinolone resistance mutations. Antimicrob Agents Chemother37:457–463 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069203-0
Loading
/content/journal/micro/10.1099/mic.0.069203-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error