1887

Abstract

Twitching motility in ADP1 is inhibited by moderate intensities of blue light in a temperature-dependent manner (maximally at 20 °C). We analysed the involvement of four predicted blue-light sensing using flavin (BLUF)-domain-containing proteins encoded in the genome of this strain in the twitching motility phenotype. All four genes were expressed both in light and in darkness. A phylogenetic tree showed that one BLUF domain, ACIAD2110, grouped separately from the other three (ACIAD1499, ACIAD2125 and ACIAD2129). Individual knockout mutants of the latter three, but not of ACIAD2110, fully abolished the light dependency of the twitching motility response. Quantitative analysis of transcript level of the three genes showed a decreased expression in the light, with dark/light ratios of 1.65±0.28, 1.79±0.21 and 2.69±0.39, for ACIAD2125, ACIAD2129 and ACIAD1499, respectively. Double and triple knockouts of ACIAD1499, ACIAD2125 and ACIAD2129 confirmed the same phenotype as the corresponding single knockouts. Complementation of all the single knockouts and the triple knockout mutants with any of the three BLUF-domain-encoding genes fully restored the inhibition of twitching motility by blue light that is observed in the wild-type strain. ADP1 therefore shows a high degree of redundancy in the genes that encode BLUF-containing photoreceptors. Moreover, all plasmid-complemented strains, expressing any of the BLUF proteins irrespective of the specific set of deleted photoreceptors, displayed increased light-dependent inhibition of twitching motility, as compared to the wild-type (<0.001). We conclude that the three genes ACIAD1499, ACIAD2125 and ACIAD2129 are jointly required to inhibit twitching motility under moderate blue-light illumination.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069153-0
2013-09-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/9/1828.html?itemId=/content/journal/micro/10.1099/mic.0.069153-0&mimeType=html&fmt=ahah

References

  1. Avila-Pérez M., Hellingwerf K. J., Kort R..( 2006;). Blue light activates the sigmaB-dependent stress response of Bacillus subtilis via YtvA. J Bacteriol188:6411–6414 [CrossRef][PubMed]
    [Google Scholar]
  2. Bhaya D., Takahashi A., Grossman A. R..( 2001;). Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc Natl Acad Sci U S A98:7540–7545 [CrossRef][PubMed]
    [Google Scholar]
  3. Bieber D., Ramer S. W., Wu C. Y., Murray W. J., Tobe T., Fernandez R., Schoolnik G. K..( 1998;). Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli.. Science280:2114–2118 [CrossRef][PubMed]
    [Google Scholar]
  4. Bonomi H. R., Posadas D. M., Paris G., Carrica M. del C., Frederickson M., Pietrasanta L. I., Bogomolni R. A., Zorreguieta A., Goldbaum F. A..( 2012;). Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor. Proc Natl Acad Sci U S A109:12135–12140 [CrossRef][PubMed]
    [Google Scholar]
  5. Bradley D. E..( 1980;). A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can J Microbiol26:146–154 [CrossRef][PubMed]
    [Google Scholar]
  6. Chiang P., Burrows L. L..( 2003;). Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa.. J Bacteriol185:2374–2378 [CrossRef][PubMed]
    [Google Scholar]
  7. Collyn F., Léty M. A., Nair S., Escuyer V., Ben Younes A., Simonet M., Marceau M..( 2002;). Yersinia pseudotuberculosis harbors a type IV pilus gene cluster that contributes to pathogenicity. Infect Immun70:6196–6205 [CrossRef][PubMed]
    [Google Scholar]
  8. Craig L., Pique M. E., Tainer J. A..( 2004;). Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol2:363–378 [CrossRef][PubMed]
    [Google Scholar]
  9. de Berardinis V., Vallenet D., Castelli V., Besnard M., Pinet A., Cruaud C., Samair S., Lechaplais C., Gyapay G..& other authors ( 2008;). A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol4:174 [CrossRef][PubMed]
    [Google Scholar]
  10. Dörr J., Hurek T., Reinhold-Hurek B..( 1998;). Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol30:7–17 [CrossRef][PubMed]
    [Google Scholar]
  11. Dubnau D..( 1999;). DNA uptake in bacteria. Annu Rev Microbiol53:217–244 [CrossRef][PubMed]
    [Google Scholar]
  12. Franklin K. A., Whitelam G. C..( 2005;). Phytochromes and shade-avoidance responses in plants. Ann Bot (Lond)96:169–175 [CrossRef][PubMed]
    [Google Scholar]
  13. Fullner K. J., Mekalanos J. J..( 1999;). Genetic characterization of a new type IV-A pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae.. Infect Immun67:1393–1404[PubMed]
    [Google Scholar]
  14. Gaspar P., Neves A. R., Gasson M. J., Shearman C. A., Santos H..( 2011;). High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD+ cofactor recycling. Appl Environ Microbiol77:6826–6835 [CrossRef][PubMed]
    [Google Scholar]
  15. Glick R., Gilmour C., Tremblay J., Satanower S., Avidan O., Déziel E., Greenberg E. P., Poole K., Banin E..( 2010;). Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa.. J Bacteriol192:2973–2980 [CrossRef][PubMed]
    [Google Scholar]
  16. Gohl O., Friedrich A., Hoppert M., Averhoff B..( 2006;). The thin pili of Acinetobacter sp. strain BD413 mediate adhesion to biotic and abiotic surfaces. Appl Environ Microbiol72:1394–1401 [CrossRef][PubMed]
    [Google Scholar]
  17. Golic A., Vaneechoutte M., Nemec A., Viale A. M., Actis L. A., Mussi M. A..( 2013;). Staring at the cold sun: blue light regulation is distributed within the genus Acinetobacter.. PLoS ONE8:e55059 [CrossRef][PubMed]
    [Google Scholar]
  18. Gomelsky M., Klug G..( 2002;). BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem Sci27:497–500 [CrossRef][PubMed]
    [Google Scholar]
  19. Hahn H. P..( 1997;). The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa – a review. Gene192:99–108 [CrossRef][PubMed]
    [Google Scholar]
  20. Harshey R. M..( 2003;). Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol57:249–273 [CrossRef][PubMed]
    [Google Scholar]
  21. Henrichsen J., Blom J..( 1975;). Correlation between twitching motility and possession of polar fimbriae in Acinetobacter calcoaceticus.. Acta Pathol Microbiol Scand [B]83:103–115[PubMed]
    [Google Scholar]
  22. Hoff W. D., van der Horst M. A., Nudel C. B., Hellingwerf K. J..( 2009;). Prokaryotic phototaxis. Chemotaxis: Methods and Protocols25–49 Jin T., Hereld D.. New York: Humana Press;
    [Google Scholar]
  23. Hunger M., Schmucker R., Kishan V., Hillen W..( 1990;). Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene87:45–51 [CrossRef][PubMed]
    [Google Scholar]
  24. Jentzsch K., Wirtz A., Circolone F., Drepper T., Losi A., Gärtner W., Jaeger K. E., Krauss U..( 2009;). Mutual exchange of kinetic properties by extended mutagenesis in two short LOV domain proteins from Pseudomonas putida.. Biochemistry48:10321–10333 [CrossRef][PubMed]
    [Google Scholar]
  25. Jones R. M., Williams P. A..( 2003;). Mutational analysis of the critical bases involved in activation of the AreR-regulated sigma54-dependent promoter in Acinetobacter sp. strain ADP1. Appl Environ Microbiol69:5627–5635 [CrossRef][PubMed]
    [Google Scholar]
  26. Kaiser D..( 2003;). Coupling cell movement to multicellular development in myxobacteria. Nat Rev Microbiol1:45–54 [CrossRef][PubMed]
    [Google Scholar]
  27. Kanazawa T., Ren S., Maekawa M., Hasegawa K., Arisaka F., Hyodo M., Hayakawa Y., Ohta H., Masuda S..( 2010;). Biochemical and physiological characterization of a BLUF protein-EAL protein complex involved in blue light-dependent degradation of cyclic diguanylate in the purple bacterium Rhodopseudomonas palustris.. Biochemistry49:10647–10655 [CrossRef][PubMed]
    [Google Scholar]
  28. Kearns D. B., Shimkets L. J..( 2001;). Lipid chemotaxis and signal transduction in Myxococcus xanthus.. Trends Microbiol9:126–129 [CrossRef][PubMed]
    [Google Scholar]
  29. Kearns D. B., Robinson J., Shimkets L. J..( 2001;). Pseudomonas aeruginosa exhibits directed twitching motility up phosphatidylethanolamine gradients. J Bacteriol183:763–767 [CrossRef][PubMed]
    [Google Scholar]
  30. Lautrop H..( 1962;). Bacterium anitratum transferred to the genus Cytophaga.. Acta Pathol Microbiol Scand Suppl154:303–304[PubMed]
    [Google Scholar]
  31. Li Y., Hao G., Galvani C. D., Meng Y., De La Fuente L., Hoch H. C., Burr T. J..( 2007;). Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell–cell aggregation. Microbiology153:719–726 [CrossRef][PubMed]
    [Google Scholar]
  32. Li H., Zhang J., Vierstra R. D., Li H..( 2010;). Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A107:10872–10877 [CrossRef][PubMed]
    [Google Scholar]
  33. Liles M. R., Viswanathan V. K., Cianciotto N. P..( 1998;). Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect Immun66:1776–1782[PubMed]
    [Google Scholar]
  34. Liu H., Kang Y., Genin S., Schell M. A., Denny T. P..( 2001;). Twitching motility of Ralstonia solanacearum requires a type IV pilus system. Microbiology147:3215–3229[PubMed]
    [Google Scholar]
  35. Losi A..( 2004;). The bacterial counterparts of plant phototropins. Photochem Photobiol Sci3:566–574 [CrossRef][PubMed]
    [Google Scholar]
  36. Losi A., Gärtner W..( 2008;). Bacterial bilin- and flavin-binding photoreceptors. Photochem Photobiol Sci7:1168–1178 [CrossRef][PubMed]
    [Google Scholar]
  37. Losi A., Gärtner W..( 2012;). The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu Rev Plant Biol63:49–72 [CrossRef][PubMed]
    [Google Scholar]
  38. Merz A. J., So M., Sheetz M. P..( 2000;). Pilus retraction powers bacterial twitching motility. Nature407:98–102 [CrossRef][PubMed]
    [Google Scholar]
  39. Mussi M. A., Gaddy J. A., Cabruja M., Arivett B. A., Viale A. M., Rasia R., Actis L. A..( 2010;). The opportunistic human pathogen Acinetobacter baumannii senses and responds to light. J Bacteriol192:6336–6345 [CrossRef][PubMed]
    [Google Scholar]
  40. O’Toole G. A., Kolter R..( 1998;). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol30:295–304 [CrossRef][PubMed]
    [Google Scholar]
  41. Palmen R., Vosman B., Buijsman P., Breek C. K., Hellingwerf K. J..( 1993;). Physiological characterization of natural transformation in Acinetobacter calcoaceticus.. J Gen Microbiol139:295–305 [CrossRef][PubMed]
    [Google Scholar]
  42. Patriquin G. M., Banin E., Gilmour C., Tuchman R., Greenberg E. P., Poole K..( 2008;). Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa.. J Bacteriol190:662–671 [CrossRef][PubMed]
    [Google Scholar]
  43. Pérez-Pantoja D., Donoso R. A., Sánchez M. A., González B..( 2009;). Genuine genetic redundancy in maleylacetate-reductase-encoding genes involved in degradation of haloaromatic compounds by Cupriavidus necator JMP134. Microbiology155:3641–3651 [CrossRef][PubMed]
    [Google Scholar]
  44. Purcell E. B., Siegal-Gaskins D., Rawling D. C., Fiebig A., Crosson S..( 2007;). A photosensory two-component system regulates bacterial cell attachment. Proc Natl Acad Sci U S A104:18241–18246 [CrossRef][PubMed]
    [Google Scholar]
  45. Rashid M. H., Kornberg A..( 2000;). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa.. Proc Natl Acad Sci U S A97:4885–4890 [CrossRef][PubMed]
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T..( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A..( 1994;). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum.. Gene145:69–73 [CrossRef][PubMed]
    [Google Scholar]
  48. Shi W., Sun H..( 2002;). Type IV pilus-dependent motility and its possible role in bacterial pathogenesis. Infect Immun70:1–4 [CrossRef][PubMed]
    [Google Scholar]
  49. Stevenson B. S., Schmidt T. M..( 2004;). Life history implications of rRNA gene copy number in Escherichia coli.. Appl Environ Microbiol70:6670–6677 [CrossRef][PubMed]
    [Google Scholar]
  50. Swartz T. E., Tseng T. S., Frederickson M. A., Paris G., Comerci D. J., Rajashekara G., Kim J. G., Mudgett M. B., Splitter G. A..& other authors ( 2007;). Blue-light-activated histidine kinases: two-component sensors in bacteria. Science317:1090–1093 [CrossRef][PubMed]
    [Google Scholar]
  51. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  52. Terry J. M., Piña S. E., Mattingly S. J..( 1991;). Environmental conditions which influence mucoid conversion Pseudomonas aeruginosa PAO1. Infect Immun59:471–477[PubMed]
    [Google Scholar]
  53. Thompson J. D., Higgins D. G., Gibson T. J..( 1994;). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  54. Tschowri N., Busse S., Hengge R..( 2009;). The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli.. Genes Dev23:522–534 [CrossRef][PubMed]
    [Google Scholar]
  55. van der Horst M. A., Key J., Hellingwerf K. J..( 2007;). Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too. Trends Microbiol15:554–562 [CrossRef][PubMed]
    [Google Scholar]
  56. van der Horst M. A., Stalcup T. P., Kaledhonkar S., Kumauchi M., Hara M., Xie A., Hellingwerf K. J., Hoff W. D..( 2009;). Locked chromophore analogs reveal that photoactive yellow protein regulates biofilm formation in the deep sea bacterium Idiomarina loihiensis.. J Am Chem Soc131:17443–17451 [CrossRef][PubMed]
    [Google Scholar]
  57. Wall D., Kaiser D..( 1999;). Type IV pili and cell motility. Mol Microbiol32:1–10 [CrossRef][PubMed]
    [Google Scholar]
  58. Wolfgang M., Lauer P., Park H. S., Brossay L., Hébert J., Koomey M..( 1998;). PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae.. Mol Microbiol29:321–330 [CrossRef][PubMed]
    [Google Scholar]
  59. Yang X., Kuk J., Moffat K..( 2008;). Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction. Proc Natl Acad Sci U S A105:14715–14720 [CrossRef][PubMed]
    [Google Scholar]
  60. Yuan H., Bauer C. E..( 2008;). PixE promotes dark oligomerization of the BLUF photoreceptor PixD. Proc Natl Acad Sci U S A105:11715–11719 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069153-0
Loading
/content/journal/micro/10.1099/mic.0.069153-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error