1887

Abstract

(Sacc.) Nirenberg is among the most common species corn pathogens worldwide, and has been recognized as a fumonisin B (FB) and fumonisin B (FB) producer. In the present work, extracts of 58 isolates from corn samples collected from Sohag Governorate, Egypt, were tested for their biotoxicity and production of fumonisin toxins. Forty-four isolates out of 58 tested produced FB or FB and FB (15 and 29 isolates, respectively) on potato–sucrose agar medium, detected by TLC, whereas the other 14 isolates did not produce fumonisin toxins. HPLC crude extract analysis confirmed the results from TLC plates. Brine shrimp larvae as well as the Gram-negative bacteria showed low bio-sensitivity towards the crude extract toxicity, whereas the Gram-positive bacteria and , especially . , showed higher sensitivity towards the tested crude extracts. These results enabled us to bio-evaluate and chemically detect fumonisin mycotoxins using a simple agar medium technique.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069039-0
2013-08-01
2020-07-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/8/1720.html?itemId=/content/journal/micro/10.1099/mic.0.069039-0&mimeType=html&fmt=ahah

References

  1. Adwan K., Abu-Hasan N.. ( 1998;). Gentamicin resistance in clinical strains of Enterobacteriaceae associated with reduced gentamicin uptake. Folia Microbiol (Praha)43:438–440 [CrossRef][PubMed]
    [Google Scholar]
  2. AOAC International ( 2007;). Official Methods of Analysis of AOAC International, 18th edn. Horwitz W., Latimer G. W.. Gaithersburg, MD: AOAC International;
    [Google Scholar]
  3. Bailly J. D., Querin A., Tardieu D., Guerre P.. ( 2005;). Production and purification of fumonisins from a highly toxigenic Fusarium verticilloides strain. Revue Méd Vét156:547–554
    [Google Scholar]
  4. Benedetti R., Nazzi F., Locci R., Firrao G.. ( 2006;). Degradation of fumonisin B1 by a bacterial strain isolated from soil. Biodegradation17:31–38 [CrossRef][PubMed]
    [Google Scholar]
  5. Booth C.. ( 1971;). The Genus Fusarium Kew: Commonwealth Mycological Institute;
    [Google Scholar]
  6. Booth C.. ( 1977;). Fusarium: Laboratory Guide to the Identification of Major Species Kew: Commonwealth Mycological Institute;
    [Google Scholar]
  7. Castellá G., Bragulat M. R., Cabañes F. J.. ( 1996;). Mycoflora and fumonisin-producing strains of Fusarium moniliforme in mixed poultry feeds and component raw material. Mycopathologia133:181–184 [CrossRef][PubMed]
    [Google Scholar]
  8. Ding L., Qin S., Li F., Chi X., Laatsch H.. ( 2008;). Isolation, antimicrobial activity, and metabolites of fungus Cladosporium sp. associated with red alga Porphyra yezoensis . Curr Microbiol56:229–235 [CrossRef][PubMed]
    [Google Scholar]
  9. Eftekhar F., Yousefzadi M., Tafakori V.. ( 2005;). Antimicrobial activity of Datura innoxia and Datura stramonium . Fitoterapia76:118–120 [CrossRef][PubMed]
    [Google Scholar]
  10. El-Kady I. A., Moubasher M. H.. ( 1982;). Toxigenicity and toxins of Stachybotrys chartarum isolates from wheat straw samples in Egypt. Exp Mycol6:25–30 [CrossRef]
    [Google Scholar]
  11. Fadl Allah E. M.. ( 1997-1998;). Occurrence and toxigenicity of Fusarium moniliforme from freshly harvested maize ears with special references to fumonisin production in Egypt. Mycopathologia140:99–103 [CrossRef][PubMed]
    [Google Scholar]
  12. Fandohan P., Gnonlonfin B., Hell K., Marasas W. F. O., Wingfield M. J.. ( 2005;). Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa. Int J Food Microbiol99:173–183 [CrossRef][PubMed]
    [Google Scholar]
  13. Farag R. S., Daw Z. Y., Hewedi F. M., El-Baroly G. S. A.. ( 1989;). Antimicrobial activity of some Egyptian spice essential oils. J Food Prot52:665–667
    [Google Scholar]
  14. Gao Y., van Belkum M. J., Stiles M. E.. ( 1999;). The outer membrane of Gram-negative bacteria inhibits antibacterial activity of brochocin-C. Appl Environ Microbiol65:4329–4333[PubMed]
    [Google Scholar]
  15. Gelderblom W. C. A., Jaskiewicz K., Marasas W. F. O., Thiel P. G., Horak R. M., Vleggaar R., Kriek N. P.. ( 1988;). Fumonisins–novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme . Appl Environ Microbiol54:1806–1811[PubMed]
    [Google Scholar]
  16. George-Ares A., Febbo E. J., Letinski D. J., Yarusinsky J., Safadi R. S., Aita A. F.. ( 2003;). Use of brine shrimp (Artemia) in dispersant toxicity tests: some caveats. Proceedings of the 2003 International Oil Spill Conference327–330[CrossRef]
    [Google Scholar]
  17. Guerra R.. ( 2001;). Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents. Chemosphere44:1737–1747 [CrossRef][PubMed]
    [Google Scholar]
  18. Hartl M., Humpf H.-U.. ( 2000;). Toxicity assessment of fumonisins using the brine shrimp (Artemia salina) bioassay. Food Chem Toxicol38:1097–1102 [CrossRef][PubMed]
    [Google Scholar]
  19. Hugo W. B., Russell A. D.. (editors) ( 1983;). Pharmaceutical Microbiology, 3rd edn. St. Louis, MO: Blackwell Scientific;
    [Google Scholar]
  20. Korpinen E. L.. ( 1974;). Studies on Stachybotrys alternans. V. Comparison of rabbit skin, mouse fibroblast culture and brine shimp tests as detectors of stachybotrys toxins. Acta Pathol Microbiol Scand B Microbiol Immunol82:465–469 [CrossRef][PubMed]
    [Google Scholar]
  21. Kpodo K., Thrane U., Hald B.. ( 2000;). Fusaria and fumonisins in maize from Ghana and their co-occurrence with aflatoxins. Int J Food Microbiol61:147–157 [CrossRef][PubMed]
    [Google Scholar]
  22. Marasas W. F. O.. ( 2001;). Discovery and occurrence of the fumonisins: a historical perspective. Environ Health Perspect109:Suppl 2239–243[PubMed][CrossRef]
    [Google Scholar]
  23. Marasas W. F. O., Nelson P. E., Toussoun T. A.. ( 1984;). Toxigenic Fusarium Species: Identity and Mycotoxicology University Park, PA: Pennsylvania State University Press;
    [Google Scholar]
  24. Mayorga P., Pérez K. R., Cruz S. M., Cáceres A.. ( 2010;). Comparison of bioassays using the anostracan crustaceans Artemia salina and Thamnocephalus platyurus for plant extract toxicity screening. Rev Bras Farmacogn20:897–903 [CrossRef]
    [Google Scholar]
  25. Mexía-Salazar A. L., Hernández-López J., Burgos-Hernández A., Cortez-Rocha M. O., Castro-Longoria R., Ezquerra-Brauer J. F.. ( 2008;). Role of fumonisin B1 on the immune system, histopathology, and muscle proteins of white shrimp (Litopenaeus vannamei). Food Chem110:471–479 [CrossRef]
    [Google Scholar]
  26. Miller J. D., Savard M. E., Sibilia A., Rapior S., Hocking A. D., Pitt J. J.. ( 1993;). Production of fumonisins and fusarins by Fusarium moniliforme from Southeast Asia. Mycologia85:385–391 [CrossRef]
    [Google Scholar]
  27. Mubatanhema W., Moss M. O., Frank M. J., Wilson D. M.. ( 1999;). Prevalence of Fusarium species of the Liseola section on Zimbabwean corn and their ability to produce the mycotoxins zearalenone, moniliformin and fumonisin B1 . Mycopathologia148:157–163 [CrossRef][PubMed]
    [Google Scholar]
  28. Müllenborn C., Steiner U., Ludwig M., Oerke E. C.. ( 2008;). Effect of fungicides on the complex of Fusarium species and saprophytic fungi colonizing wheat kernels. Eur J Plant Pathol120:157–166 [CrossRef]
    [Google Scholar]
  29. Munkvold G. P., Desjardins A. E.. ( 1997;). Fumonisins in maize: can we reduce their occurrence. Plant Dis81:556–565 [CrossRef]
    [Google Scholar]
  30. Murthy M. M., Subramanyam M., Giridhar K. V., Jetty A.. ( 2006;). Antimicrobial activities of bharangin from Premna herbaceae Roxb. and bharangin monoacetate. J Ethnopharmacol104:290–292 [CrossRef][PubMed]
    [Google Scholar]
  31. Nałecz-Jawecki G., Grabińska-Sota E., Narkiewicz P.. ( 2003;). The toxicity of cationic surfactants in four bioassays. Ecotoxicol Environ Saf54:87–91 [CrossRef][PubMed]
    [Google Scholar]
  32. Nelson P. E., Plattner R. D., Shackelford D. D., Desjardins A. E.. ( 1991;). Production of fumonisins by Fusarium moniliforme strains from various substrates and geographic areas. Appl Environ Microbiol57:2410–2412[PubMed]
    [Google Scholar]
  33. Okamura H., Aoyama I., Liu D., Maguire R. J., Pacepavicius G. J., Lau Y. L.. ( 2000;). Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic Environment. Water Res34:3523–3530 [CrossRef]
    [Google Scholar]
  34. Pepeljnjak S., Petrinec Z., Kovacic S., Segvic M.. ( 2003;). Screening toxicity study in young carp (Cyprinus carpio L.) on feed amended with fumonisin B1 . Mycopathologia156:139–145 [CrossRef][PubMed]
    [Google Scholar]
  35. Pitt J. I., Hocking A. D., Samson R. A., King A. D.. ( 1992;). Recommended methods for mycological examination of foods, 1992. Modern Methods in Food Mycology365–368 Samson R. A., Hocking A. D., Pitt J. I., King A. D.. Amsterdam: Elsevier;
    [Google Scholar]
  36. Ross P. F., Nelson P. E., Richard J. L., Osweiler G. D., Rice L. G., Plattner R. D., Wilson T. M.. ( 1990;). Production of fumonisins by Fusarium moniliforme and Fusarium proliferatum isolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Appl Environ Microbiol56:3225–3226[PubMed]
    [Google Scholar]
  37. Sawer I. K., Berry M. I., Ford J. L.. ( 1997;). Effect of medium composition, agitation and the presence of EDTA on the antimicrobial activity of cryptolepine. Lett Appl Microbiol25:207–211 [CrossRef][PubMed]
    [Google Scholar]
  38. Shephard G. S., Thiel P. G., Stockenström S., Sydenham E. W.. ( 1996;). Worldwide survey of fumonisin contamination of corn and corn-based products. J AOAC Int79:671–687[PubMed]
    [Google Scholar]
  39. Sleigh J. D., Timburg M. C.. ( 1981;). Notes on Medical Bacteriology London: Churchill Livingstone;
    [Google Scholar]
  40. Soares A. M. V. M., Baird D. J., Calow P.. ( 1992;). Interclonal variation in the performace of Daphnia magna straus in chronic bioassays. Environ Toxicol Chem11:1477–1483
    [Google Scholar]
  41. Song M. Y., Brown J. J.. ( 1998;). Osmotic effects as a factor modifying insecticide toxicity on Aedes and Artemia . Ecotoxicol Environ Saf41:195–202 [CrossRef][PubMed]
    [Google Scholar]
  42. Sorgeloos P., Remiche-Van Der Wielen C., Persoone G.. ( 1978;). The use of Artemia nauplii for toxicity tests – a critical analysis. Ecotoxicol Environ Saf2:249–255 [CrossRef][PubMed]
    [Google Scholar]
  43. Sydenham E. W., Shephard G. S., Thiel P. G., Marasas W. F. O., Rheeder J. P., Peralta Sanhueza C. E., Gonzalez H. H. L., Resnik S. L.. ( 1993;). Fumonisins in Argentinian field trial corn. Agric Food Chem41:891–895 [CrossRef]
    [Google Scholar]
  44. Taligoola H. K., Ismail M. A., Chebon S. K.. ( 2004;). Mycobiota associated with rice grains marketed in Uganda. J Biol Sci4:271–278 [CrossRef]
    [Google Scholar]
  45. Tournas V. H., Heeres J., Burgess L.. ( 2006;). Toxic substances produced by Fusarium. III. Production and screening of phytotoxic substances of F. oxysporum f. sp. carthami responsible for the wilt disease of safflower (Carthamus tinctorius Linn.). Experientia32:608–609
    [Google Scholar]
  46. Visconti A., Doko M. B.. ( 1994;). Survey of fumonisin production by Fusarium isolated from cereals in Europe. J AOAC Int77:546–550[PubMed]
    [Google Scholar]
  47. Wilson B. J., Maronpot R. R.. ( 1971;). Causative fungus agent of leucoencephalomalacia in equine animals. Vet Rec88:484–486 [CrossRef][PubMed]
    [Google Scholar]
  48. Zohri A. N., Abdel-Gawad K., Saber S.. ( 1995;). Antibacterial, antidermatophytic and antitoxigenic activities of onion (Allium cepa L.) oil. Microbiol Res150:167–172 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069039-0
Loading
/content/journal/micro/10.1099/mic.0.069039-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error