1887

Abstract

Aerobic anoxygenic photosynthesis (AAP) is found in an increasing number of proteobacterial strains thriving in ecosystems ranging from extremely oligotrophic to eutrophic. Here, we have investigated whether the fuel oxygenate-degrading betaproteobacterium L108 can use AAP to compensate kinetic limitations at low heterotrophic substrate fluxes. In a fermenter experiment with complete biomass retention and also during chemostat cultivation, strain L108 was challenged with extremely low substrate feeding rates of -butyl alcohol (TBA), an intermediate of methyl -butyl ether (MTBE). Interestingly, formation of photosynthetic pigments, identified as bacteriochlorophyll and spirilloxanthin, was only induced in growing cells at TBA feeding rates less than or equal to maintenance requirements observed under energy excess conditions. Growth continued at rates between 0.001 and 0.002 h even when the TBA feed was decreased to values close to 30 % of this maintenance rate. Partial sequencing of genomic DNA of strain L108 revealed a bacteriochlorophyll synthesis gene cluster () and photosynthesis regulator genes ( and ) typically found in AAP and other photosynthetic proteobacteria. The usage of light as auxiliary energy source enabling evolution of efficient degradation pathways for kinetically limited heterotrophic substrates and for lowering the threshold substrate concentration at which growth becomes zero is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068957-0
2013-10-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2180.html?itemId=/content/journal/micro/10.1099/mic.0.068957-0&mimeType=html&fmt=ahah

References

  1. Agalidis I., Mattioli T., Reiss-Husson F..( 1999;). Spirilloxanthin is released by detergent from Rubrivivax gelatinosus reaction center as an aggregate with unusual spectral properties. Photosynth Res62:31–42 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J..( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Berghoff B. A., Glaeser J., Nuss A. M., Zobawa M., Lottspeich F., Klug G..( 2011;). Anoxygenic photosynthesis and photooxidative stress: a particular challenge for Roseobacter.. Environ Microbiol13:775–791 [CrossRef][PubMed]
    [Google Scholar]
  4. Chance B..( 1952;). Spectra and reaction kinetics of respiratory pigments of homogenized and intact cells. Nature169:215–221 [CrossRef][PubMed]
    [Google Scholar]
  5. Chesbro W. R., Evans T., Eifert R..( 1979;). Very slow growth of Escherichia coli.. J Bacteriol139:625–638[PubMed]
    [Google Scholar]
  6. Csotonyi J. T., Swiderski J., Stackebrandt E., Yurkov V..( 2010;). A new extreme environment for aerobic anoxygenic phototrophs: biological soil crusts. Adv Exp Med Biol675:3–14 [CrossRef][PubMed]
    [Google Scholar]
  7. Deeb R. A., Hu H. Y., Hanson J. R., Scow K. M., Alvarez-Cohen L..( 2001;). Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. Environ Sci Technol35:312–317 [CrossRef][PubMed]
    [Google Scholar]
  8. Elsen S., Jaubert M., Pignol D., Giraud E..( 2005;). PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria. Mol Microbiol57:17–26 [CrossRef][PubMed]
    [Google Scholar]
  9. Fuchs B. M., Spring S., Teeling H., Quast C., Wulf J., Schattenhofer M., Yan S., Ferriera S., Johnson J..& other authors ( 2007;). Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci U S A104:2891–2896 [CrossRef][PubMed]
    [Google Scholar]
  10. Hojerová E., Mašín M., Brunet C., Ferrera I., Gasol J. M., Koblížek M..( 2011;). Distribution and growth of aerobic anoxygenic phototrophs in the Mediterranean Sea. Environ Microbiol13:2717–2725 [CrossRef][PubMed]
    [Google Scholar]
  11. Hyman M..( 2013;). Biodegradation of gasoline ether oxygenates. Curr Opin Biotechnol24:443–450 [CrossRef][PubMed]
    [Google Scholar]
  12. Igarashi N., Harada J., Nagashima S., Matsuura K., Shimada K., Nagashima K. V..( 2001;). Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol52:333–341[PubMed]
    [Google Scholar]
  13. Imhoff J. F., Trüper H. G..( 1989;). Purple nonsulfur bacteria. Bergey's Manual in Systematic Bacteriology1658–1661 Stacey J. T., Bryant M. P., Pfennig N., Holt J. G.. Baltimore, Md.: Williams and Wikins;
    [Google Scholar]
  14. Jechalke S., Rosell M., Martínez-Lavanchy P. M., Pérez-Leiva P., Rohwerder T., Vogt C., Richnow H. H..( 2011;). Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems. Appl Environ Microbiol77:1086–1096 [CrossRef][PubMed]
    [Google Scholar]
  15. Kolb A., Püttmann W..( 2006;). Comparison of MTBE concentrations in groundwater of urban and nonurban areas in Germany. Water Res40:3551–3558 [CrossRef][PubMed]
    [Google Scholar]
  16. Kolber Z. S., Plumley F. G., Lang A. S., Beatty J. T., Blankenship R. E., VanDover C. L., Vetriani C., Koblizek M., Rathgeber C., Falkowski P. G..( 2001;). Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science292:2492–2495 [CrossRef][PubMed]
    [Google Scholar]
  17. Lechner U., Brodkorb D., Geyer R., Hause G., Härtig C., Auling G., Fayolle-Guichard F., Piveteau P., Müller R. H., Rohwerder T..( 2007;). Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol57:1295–1303 [CrossRef][PubMed]
    [Google Scholar]
  18. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J..( 1951;). Protein measurement with the Folin phenol reagent. J Biol Chem193:265–275[PubMed]
    [Google Scholar]
  19. Masuda S., Berleman J., Hasselbring B. M., Bauer C. E..( 2008;). Regulation of aerobic photosystem synthesis in the purple bacterium Rhodospirillum centenum by CrtJ and AerR. Photochem Photobiol Sci7:1267–1272 [CrossRef][PubMed]
    [Google Scholar]
  20. Moran M. J., Zogorski J. S., Squillace P. J..( 2005;). MTBE and gasoline hydrocarbons in ground water of the United States. Ground Water43:615–627 [CrossRef][PubMed]
    [Google Scholar]
  21. Moskvin O. V., Gilles-Gonzalez M. A., Gomelsky M..( 2010;). The PpaA/AerR regulators of photosynthesis gene expression from anoxygenic phototrophic proteobacteria contain heme-binding SCHIC domains. J Bacteriol192:5253–5256 [CrossRef][PubMed]
    [Google Scholar]
  22. Müller R. H., Babel W..( 1996;). Measurement of growth at very low rates (μ ≥ 0), an approach to study the energy requirement for the survival of Alcaligenes eutrophus JMP 134. Appl Environ Microbiol62:147–151[PubMed]
    [Google Scholar]
  23. Müller R. H., Rohwerder T., Harms H..( 2007;). Carbon conversion efficiency and limits of productive bacterial degradation of methyl tert-butyl ether and related compounds. Appl Environ Microbiol73:1783–1791 [CrossRef][PubMed]
    [Google Scholar]
  24. Müller R. H., Rohwerder T., Harms H..( 2008;). Degradation of fuel oxygenates and their main intermediates by Aquincola tertiaricarbonis L108. Microbiology154:1414–1421 [CrossRef][PubMed]
    [Google Scholar]
  25. Müller S., Harms H., Bley T..( 2010;). Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol21:100–113 [CrossRef][PubMed]
    [Google Scholar]
  26. Pirt S. J..( 1982;). Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol133:300–302 [CrossRef][PubMed]
    [Google Scholar]
  27. Rohwerder T., Breuer U., Benndorf D., Lechner U., Müller R. H..( 2006;). The alkyl tert-butyl ether intermediate 2-hydroxyisobutyrate is degraded via a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol72:4128–4135 [CrossRef][PubMed]
    [Google Scholar]
  28. Rohwerder T., Harms H., Müller R. H..( 2011;). Synthesis of poly-3-hydroxybutyrate reduces maintenance demand in bacteria growing slowly on methyl tert-butyl ether. J Bioremed Biodegrad [CrossRef]
    [Google Scholar]
  29. Schäfer F., Muzica L., Schuster J., Treuter N., Rosell M., Harms H., Müller R. H., Rohwerder T..( 2011;). Formation of alkenes via degradation of tert-alkyl ethers and alcohols by Aquincola tertiaricarbonis L108 and Methylibium spp. Appl Environ Microbiol77:5981–5987 [CrossRef][PubMed]
    [Google Scholar]
  30. Schäfer F., Schuster J., Würz B., Härtig C., Harms H., Müller R. H., Rohwerder T..( 2012;). Synthesis of short-chain diols and unsaturated alcohols from secondary alcohol substrates by the Rieske nonheme mononuclear iron oxygenase MdpJ. Appl Environ Microbiol78:6280–6284 [CrossRef][PubMed]
    [Google Scholar]
  31. Schmidt T. C., Morgenroth E., Schirmer M., Effenberger M., Haderlein S. B..( 2002;). Use and occurrence of fuel oxygenates in Europe. Oxygenates in Gasoline: Environmental Aspects58–79 Diaz A. F., Drogos D. L.. Washington, DC: ACS;
    [Google Scholar]
  32. Schuster J., Schäfer F., Hübler N., Brandt A., Rosell M., Härtig C., Harms H., Müller R. H., Rohwerder T..( 2012;). Bacterial degradation of tert-amyl alcohol proceeds via hemiterpene 2-methyl-3-buten-2-ol by employing the tertiary alcohol desaturase function of the Rieske nonheme mononuclear iron oxygenase MdpJ. J Bacteriol194:972–981 [CrossRef][PubMed]
    [Google Scholar]
  33. Schuster J., Purswani J., Breuer U., Pozo C., Harms H., Müller R. H., Rohwerder T..( 2013;). Constitutive expression of the cytochrome P450 EthABCD monooxygenase system enables degradation of synthetic dialkyl ethers in Aquincola tertiaricarbonis L108. Appl Environ Microbiol79:2321–2327 [CrossRef][PubMed]
    [Google Scholar]
  34. Seeger E. M., Kuschk P., Fazekas H., Grathwohl P., Kaestner M..( 2011;). Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands. Environ Pollut159:3769–3776 [CrossRef][PubMed]
    [Google Scholar]
  35. Suyama T., Shigematsu T., Takaichi S., Nodasaka Y., Fujikawa S., Hosoya H., Tokiwa Y., Kanagawa T., Hanada S..( 1999;). Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria. Int J Syst Bacteriol49:449–457 [CrossRef][PubMed]
    [Google Scholar]
  36. Suyama T., Shigematsu T., Suzuki T., Tokiwa Y., Kanagawa T., Nagashima K. V. P., Hanada S..( 2002;). Photosynthetic apparatus in Roseateles depolymerans 61A is transcriptionally induced by carbon limitation. Appl Environ Microbiol68:1665–1673 [CrossRef][PubMed]
    [Google Scholar]
  37. Suzuki M. T., Béjà O..( 2007;). An elusive marine photosynthetic bacterium is finally unveiled. Proc Natl Acad Sci U S A104:2561–2562 [CrossRef][PubMed]
    [Google Scholar]
  38. Tomasch J., Gohl R., Bunk B., Diez M. S., Wagner-Döbler I..( 2011;). Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME J5:1957–1968 [CrossRef][PubMed]
    [Google Scholar]
  39. Tros M. E., Bosma T. N., Schraa G., Zehnder A. J..( 1996;). Measurement of minimum substrate concentration (Smin) in a recycling fermentor and its prediction from the kinetic parameters of Pseudomonas strain B13 from batch and chemostat cultures. Appl Environ Microbiol62:3655–3661[PubMed]
    [Google Scholar]
  40. van Verseveld H. W., Chesbro W. R., Braster M., Stouthamer A. H..( 1984;). Eubacteria have 3 growth modes keyed to nutrient flow. Consequences for the concept of maintenance and maximal growth yield. Arch Microbiol137:176–184 [CrossRef][PubMed]
    [Google Scholar]
  41. van Wezel A., Puijker L., Vink C., Versteegh A., de Voogt P..( 2009;). Odour and flavour thresholds of gasoline additives (MTBE, ETBE and TAME) and their occurrence in Dutch drinking water collection areas. Chemosphere76:672–676 [CrossRef][PubMed]
    [Google Scholar]
  42. Wang X., Deshusses M. A..( 2007;). Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co-contaminants. Biodegradation18:37–50 [CrossRef][PubMed]
    [Google Scholar]
  43. Yaneva N., Schuster J., Schäfer F., Lede V., Przybylski D., Paproth T., Harms H., Müller R. H., Rohwerder T..( 2012;). Bacterial acyl-CoA mutase specifically catalyzes coenzyme B12-dependent isomerization of 2-hydroxyisobutyryl-CoA and (S)-3-hydroxybutyryl-CoA. J Biol Chem287:15502–15511 [CrossRef][PubMed]
    [Google Scholar]
  44. Yurkov V. V., Beatty J. T..( 1998;). Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev62:695–724[PubMed]
    [Google Scholar]
  45. Yurkova N., Rathgeber C., Swiderski J., Stackebrandt E., Beatty J. T., Hall K. J., Yurkov V..( 2002;). Diversity, distribution and physiology of the aerobic phototrophic bacteria in the mixolimnion of a meromictic lake. FEMS Microbiol Ecol40:191–204 [CrossRef][PubMed]
    [Google Scholar]
  46. Yutin N., Suzuki M. T., Teeling H., Weber M., Venter J. C., Rusch D. B., Béjà O..( 2007;). Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ Microbiol9:1464–1475 [CrossRef][PubMed]
    [Google Scholar]
  47. Zheng Q., Zhang R., Koblížek M., Boldareva E. N., Yurkov V., Yan S., Jiao N..( 2011;). Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria. PLoS ONE6:e25050 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068957-0
Loading
/content/journal/micro/10.1099/mic.0.068957-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error